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COSMOLOGY AND ASTROPHYSICS

J. Garćıa-Bellido
Departamento de Fı́sica Teórica, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain

Abstract
In these lectures I review the present status of the so-called Standard Cos-
mological Model, based on the hot Big Bang Theory and the Inflationary
Paradigm. I will make special emphasis on the recent developments in obser-
vational cosmology, mainly the acceleration of the universe, the precise mea-
surements of the microwave background anisotropies, and the formation of
structure like galaxies and clusters of galaxies from tiny primodial fluctuations
generated during inflation.

1. INTRODUCTION

The last five years have seen the coming of age of Modern Cosmology, a mature branch of science
based on the hot Big Bang theory and the Inflationary Paradigm. In particular, we can now define rather
precisely a Standard Model of Cosmology, where the basic parameters are determined within small
uncertainties, of just a few percent, thanks to a host of experiments and observations. This precision era
of cosmology has become possible thanks to important experimental developments in all fronts, from
measurements of supernovae at high redshifts to the microwave background anisotropies, as well as to
the distribution of matter in galaxies and clusters of galaxies.

In these lecture notes I will first introduce the basic concepts and equations associated with hot
Big Bang cosmology, defining the main cosmological parameters and their corresponding relationships.
Then I will address in detail the three fundamental observations that have shaped our present knowledge:
the recent acceleration of the universe, the distribution of matter on large scales and the anisotropies in
the microwave background. Together these observations allow the precise determination of a handful of
cosmological parameters, in the context of the inflationaryplus cold dark matter paradigm.

2. BIG BANG COSMOLOGY

Our present understanding of the universe is based upon the successful hot Big Bang theory, which
explains its evolution from the first fraction of a second to our present age, around 13.6 billion years
later. This theory rests upon four robust pillars, a theoretical framework based on general relativity,
as put forward by Albert Einstein [1] and Alexander A. Friedmann [2] in the 1920s, and three basic
observational facts: First, the expansion of the universe,discovered by Edwin P. Hubble [3] in the 1930s,
as a recession of galaxies at a speed proportional to their distance from us. Second, the relative abundance
of light elements, explained by George Gamow [4] in the 1940s, mainly that of helium, deuterium and
lithium, which were cooked from the nuclear reactions that took place at around a second to a few minutes
after the Big Bang, when the universe was a few times hotter than the core of the sun. Third, the cosmic
microwave background (CMB), the afterglow of the Big Bang, discovered in 1965 by Arno A. Penzias
and Robert W. Wilson [5] as a very isotropic blackbody radiation at a temperature of about 3 degrees
Kelvin, emitted when the universe was cold enough to form neutral atoms, and photons decoupled from
matter, approximately 380,000 years after the Big Bang. Today, these observations are confirmed to
within a few percent accuracy, and have helped establish thehot Big Bang as the preferred model of the
universe.

Modern Cosmology begun as a quantitative science with the advent of Einstein’s general rela-
tivity and the realization that the geometry of space-time,and thus the general attraction of matter, is
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determined by the energy content of the universe [6]

Gµν ≡ Rµν −
1

2
gµνR+ Λ gµν = 8πGTµν . (1)

These non-linear equations are simply too difficult to solvewithout invoking some symmetries of the
problem at hand: the universe itself.

We live on Earth, just 8 light-minutes away from our star, theSun, which is orbiting at 8.5 kpc
from the center of our galaxy,1 the Milky Way, an ordinary galaxy within the Virgo cluster, of size a
few Mpc, itself part of a supercluster of size a few 100 Mpc, within the visible universe, approximately
10,000 Mpc in size. Although at small scales the universe looks very inhomogeneous and anisotropic,
the deepest galaxy catalogs like 2dF GRS and SDSS suggest that the universe on large scales (beyond the
supercluster scales) is very homogeneous and isotropic. Moreover, the cosmic microwave background,
which contains information about the early universe, indicates that the deviations from homogeneity and
isotropy were just a few parts per million at the time of photon decoupling. Therefore, we can safely
impose those symmetries to the univerge at large and determine the corresponding evolution equations.
The most general metric satisfying homogeneity and isotropy is the Friedmann-Robertson-Walker (FRW)
metric, written here in terms of the invariant geodesic distanceds2 = gµνdx

µdxν in four dimensions [6]
µ = 0, 1, 2, 3,2

ds2 = −dt2 + a2(t)

[

dr2

1−K r2
+ r2(dθ2 + sin2 θ dφ2)

]

, (2)

characterized by just two quantities, ascale factora(t), which determines the physical size of the uni-
verse, and a constantK, which characterizes thespatialcurvature of the universe,

(3)R =
6K

a2(t)











K = −1 OPEN
K = 0 FLAT
K = +1 CLOSED

(3)

Spatially open, flat and closed universes have different three-geometries. Light geodesics on these uni-
verses behave differently, and thus could in principle be distinguished observationally, as we shall discuss
later. Apart from the three-dimensional spatial curvature, we can also compute a four-dimensionalspace-
timecurvature,

(4)R = 6
ä

a
+ 6

(

ȧ

a

)2

+ 6
K

a2
. (4)

Depending on the dynamics (and thus on the matter/energy content) of the universe, we will have dif-
ferent possible outcomes of its evolution. The universe mayexpand for ever, recollapse in the future or
approach an asymptotic state in between.

2.1 The matter and energy content of the universe

The most general matter fluid consistent with the assumptionof homogeneity and isotropy is a perfect
fluid, one in which an observercomoving with the fluidwould see the universe around it as isotropic. The
energy momentum tensor associated with such a fluid can be written as [6]

T µν = p gµν + (p+ ρ)UµUν , (5)

wherep(t) andρ(t) are the pressure and energy density of the fluid at a given timein the expansion, as
measured by this comoving observer, andUµ is the comoving four-velocity, satisfyingUµUµ = −1. For
such a comoving observer, the matter content looks isotropic (in its rest frame),

T µ
ν = diag(−ρ(t), p(t), p(t), p(t)) . (6)

1One parallax second (1 pc),parsecfor short, corresponds to a distance of about 3.26 light-years or3.09× 1018 cm.
2I am usingc = 1 everywhere, unless specified, and a metric signature(−,+,+,+).



The conservation of energy (T µν
;ν = 0), a direct consequence of the general covariance of the theory

(Gµν
;ν = 0), can be written in terms of the FRW metric and the perfect fluid tensor (5) as

ρ̇+ 3
ȧ

a
(p+ ρ) = 0 . (7)

In order to find explicit solutions, one has to supplement theconservation equation with anequa-
tion of staterelating the pressure and the density of the fluid,p = p(ρ). The most relevant fluids in
cosmology are barotropic, i.e. fluids whose pressure is linearly proportional to the density,p = w ρ, and
therefore the speed of sound is constant in those fluids.

We will restrict ourselves in these lectures to three main types of barotropic fluids:
• Radiation, with equation of statepR = ρR/3, associated with relativistic degrees of freedom (i.e.

particles with temperatures much greater than their mass).In this case, the energy density of
radiation decays asρR ∼ a−4 with the expansion of the universe.

• Matter, with equation of statepM ≃ 0, associated with nonrelativistic degrees of freedom (i.e.
particles with temperatures much smaller than their mass).In this case, the energy density of
matter decays asρM ∼ a−3 with the expansion of the universe.

• Vacuum energy, with equation of statepV = −ρV , associated with quantum vacuum fluctuations.
In this case, the vacuum energy density remains constant with the expansion of the universe.
This is all we need in order to solve the Einstein equations. Let us now write the equations of

motion of observers comoving with such a fluid in an expandinguniverse. According to general relativity,
these equations can be deduced from the Einstein equations (1), by substituting the FRW metric (2) and
the perfect fluid tensor (5). Theµ = i, ν = j component of the Einstein equations, together with the
µ = 0, ν = 0 component constitute the so-called Friedmann equations,

(

ȧ

a

)2

=
8πG

3
ρ+

Λ

3
− K

a2
, (8)

ä

a
= − 4πG

3
(ρ+ 3p) +

Λ

3
. (9)

These equations contain all the relevant dynamics, since the energy conservation equation (7) can be
obtained from these.

2.2 The Cosmological Parameters

I will now define the most important cosmological parameters. Perhaps the best known is theHubble
parameteror rate of expansion today,H0 = ȧ/a(t0). We can write the Hubble parameter in units of 100
km s−1Mpc−1, which can be used to estimate the order of magnitude for the present size and age of the
universe,

H0 ≡ 100h km s−1Mpc−1 , (10)

cH−1
0 = 3000h−1 Mpc , (11)

H−1
0 = 9.773h−1 Gyr . (12)

The parameterh was measured to be in the range0.4 < h < 1 for decades, and only in the last few years
has it been found to lie within 4% ofh = 0.70. I will discuss those recent measurements in the next
Section.

Using the present rate of expansion, one can define acritical densityρc, that which corresponds
to a flat universe,

ρc ≡
3H2

0

8πG
= 1.88h2 10−29 g/cm3 (13)

= 2.77h−1 1011 M⊙/(h
−1 Mpc)3 (14)

= 11.26h2 protons/m3 , (15)



whereM⊙ = 1.989 × 1033 g is a solar mass unit. The critical densityρc corresponds to approximately
6 protons per cubic meter, certainly a very dilute fluid!

In terms of the critical density it is possible to define the density parameter

Ω0 ≡
8πG

3H2
0

ρ(t0) =
ρ

ρc
(t0) , (16)

whose sign can be used to determine the spatial (three-)curvature. Closed universes (K = +1) have
Ω0 > 1, flat universes (K = 0) haveΩ0 = 1, and open universes (K = −1) haveΩ0 < 1, no matter
what are the individual components that sum up to the densityparameter.

In particular, we can define the individual ratiosΩi ≡ ρi/ρc, for matter, radiation, cosmological
constant and even curvature, today,

ΩM =
8πGρM
3H2

0

ΩR =
8πGρR
3H2

0

(17)

ΩΛ =
Λ

3H2
0

ΩK = − K

a20H
2
0

. (18)

For instance, we can evaluate today the radiation componentΩR, corresponding to relativistic parti-
cles, from the density of microwave background photons,ρCMB = π2k4T 4

CMB/(15h̄
3c3) = 4.5 ×

10−34 g/cm3, which givesΩCMB = 2.4 × 10−5 h−2. Three approximately massless neutrinos would
contribute a similar amount. Therefore, we can safely neglect the contribution of relativistic particles to
the total density of the universe today, which is dominated either by non-relativistic particles (baryons,
dark matter or massive neutrinos) or by a cosmological constant, and write the rate of expansion in terms
of its value today, as

H2(a) = H2
0

(

ΩR
a40
a4

+ΩM
a30
a3

+ΩΛ +ΩK
a20
a2

)

. (19)

An interesting consequence of these definitions is that one can now write the Friedmann equation today,
a = a0, as acosmic sum rule,

1 = ΩM +ΩΛ +ΩK , (20)

where we have neglectedΩR today. That is, in the context of a FRW universe, the total fraction of
matter density, cosmological constant and spatial curvature today must add up to one. For instance, if we
measure one of the three components, say the spatial curvature, we can deduce the sum of the other two.

Looking now at the second Friedmann equation (9), we can define another basic parameter, the
deceleration parameter,

q0 = −
a ä

ȧ2
(t0) =

4πG

3H2
0

[

ρ(t0) + 3p(t0)
]

, (21)

defined so that it is positive for ordinary matter and radiation, expressing the fact that the universe expan-
sion should slow down due to the gravitational attraction ofmatter. We can write this parameter using
the definitions of the density parameter for known and unknown fluids (with densityΩx and arbitrary
equation of statewx) as

q0 = ΩR +
1

2
ΩM − ΩΛ +

1

2

∑

x

(1 + 3wx)Ωx . (22)

Uniform expansion corresponds toq0 = 0 and requires a cancellation between the matter and vacuum
energies. For matter domination,q0 > 0, while for vacuum domination,q0 < 0. As we will see in a
moment, we are at present probing the time dependence of the deceleration parameter and can determine
with some accuracy the moment at which the universe went froma decelerating phase, dominated by
dark matter, into an acceleration phase at present, which seems to indicate the dominance of some kind
of vacuum energy.
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Fig. 1: Parameter space(ΩM , ΩΛ). The green (dashed) lineΩΛ = 1−ΩM corresponds to a flat universe,ΩK = 0, separating

open from closed universes. The blue (dotted) lineΩΛ = ΩM/2 corresponds to uniform expansion,q0 = 0, separating

accelerating from decelerating universes. The violet (dot-dashed) line corresponds to critical universes, separating eternal

expansion from recollapse in the future. Finally, the red (continuous) lines correspond tot0H0 = 0.5, 0.6, . . . , ∞, beyond

which the universe has a bounce.

2.3 The(ΩM , ΩΛ) plane

Now that we know that the universe is accelerating, one can parametrize the matter/energy content of
the universe with just two components: the matter, characterized byΩM , and the vacuum energyΩΛ.
Different values of these two parameters completely specify the universe evolution. It is thus natural to
plot the results of observations in the plane (ΩM , ΩΛ), in order to check whether we arrive at a consistent
picture of the present universe from several different angles (different sets of cosmological observations).

Moreover, different regions of this plane specify different behaviors of the universe. The bound-
aries between regions are well defined curves that can be computed for a given model. I will now describe
the various regions and boundaries.

• Uniform expansion(q0 = 0). Corresponds to the lineΩΛ = ΩM/2. Points above this line
correspond to universes that are accelerating today, whilethose below correspond to decelerat-
ing universes, in particular the old cosmological model of Einstein-de Sitter (EdS), withΩΛ =
0, ΩM = 1. Since 1998, all the data from Supernovae of type Ia appear above this line, many
standard deviations away from EdS universes.

• Flat universe(ΩK = 0). Corresponds to the lineΩΛ = 1 − ΩM . Points to the right of this line
correspond to closed universes, while those to the left correspond to open ones. In the last few
years we have mounting evidence that the universe is spatially flat (in fact Euclidean).

• Bounce(t0H0 = ∞). Corresponds to a complicated function ofΩΛ(ΩM ), normally expressed as
an integral equation, where

t0H0 =

∫ 1

0
da [1 + ΩM(1/a − 1) + ΩΛ(a

2 − 1)]−1/2



is the product of the age of the universe and the present rate of expansion. Points above this line
correspond to universes that have contracted in the past andhave later rebounced. At present, these
universes are ruled out by observations of galaxies and quasars at high redshift (up toz = 10).

• Critical Universe(H = Ḣ = 0). Corresponds to the boundary between eternal expansion inthe
future and recollapse. ForΩM ≤ 1, it is simply the lineΩΛ = 0, but forΩM > 1, it is a more
complicated curve,

ΩΛ = 4ΩM sin3
[1

3
arcsin

(ΩM − 1

ΩM

)]

≃ 4

27

(ΩM − 1)3

Ω2
M

.

These critical solutions are asymptotic to the EdS model.

These boundaries, and the regions they delimit, can be seen in Fig. 1, together with the lines of
equalt0H0 values.

In summary, the basic cosmological parameters that are now been hunted by a host of cosmological
observations are the following: the present rate of expansionH0; the age of the universet0; the deceler-
ation parameterq0; the spatial curvatureΩK ; the matter contentΩM ; the vacuum energyΩΛ; the baryon
densityΩB; the neutrino densityΩν , and many other that characterize the perturbations responsible for
the large scale structure (LSS) and the CMB anisotropies.

2.4 The accelerating universe

Let us first describe the effect that the expansion of the universe has on the objects that live in it. In the
absence of other forces but those of gravity, the trajectoryof a particle is given by general relativity in
terms of the geodesic equation

duµ

ds
+ Γµ

νλ u
νuλ = 0 , (23)

whereuµ = (γ, γvi), with γ2 = 1 − v2 andvi is the peculiar velocity. HereΓµ
νλ is the Christoffel con-

nection [6], whose only non-zero component isΓ0
ij = (ȧ/a) gij ; substituting into the geodesic equation,

we obtain|~u| ∝ 1/a, and thus the particle’s momentum decays with the expansionlike p ∝ 1/a. In the
case of a photon, satisfying the de Broglie relationp = h/λ, one obtains the well knownphoton redshift

λ1

λ0
=

a(t1)

a(t0)
⇒ z ≡ λ0 − λ1

λ1
=

a0
a1
− 1 , (24)

whereλ0 is the wavelength measured by an observer at timet0, while λ1 is the wavelength emitted
when the universe was younger(t1 < t0). Normally we measure light from stars in distant galaxies and
compare their observed spectra with our laboratory (restframe) spectra. The fraction (24) then gives the
redshiftz of the object. We are assuming, of course, that both the emitted and the restframe spectra are
identical, so that we can actually measure the effect of the intervening expansion, i.e. the growth of the
scale factor fromt1 to t0, when we compare the two spectra. Note that if the emitting galaxy and our own
participated in the expansion, i.e. if our measuring rods (our rulers) also expanded with the universe, we
would see no effect! The reason we can measure the redshift oflight from a distant galaxy is because our
galaxy is a gravitationally bounded object that has decoupled from the expansion of the universe. It is
the distance between galaxies that changes with time, not the sizes of galaxies, nor the local measuring
rods.

We can now evaluate the relationship between physical distance and redshift as a function of the
rate of expansion of the universe. Because of homogeneity wecan always choose our position to be at
the originr = 0 of our spatial section. Imagine an object (a star) emitting light at timet1, at coordinate
distancer1 from the origin. Because of isotropy we can ignore the angular coordinates(θ, φ). Then the
physical distance, to first order, will bed = a0 r1. Since light travels along null geodesics [6], we can



write 0 = −dt2 + a2(t) dr2/(1 −Kr2), and therefore,

∫ t0

t1

dt

a(t)
=

∫ r1

0

dr√
1−Kr2

≡ f(r1) =











arcsin r1 K = 1
r1 K = 0
arcsinh r1 K = −1

(25)

If we now Taylor expand the scale factor to first order,

1

1 + z
=

a(t)

a0
= 1 +H0(t− t0) +O(t− t0)

2 , (26)

we find, to first approximation,

r1 ≈ f(r1) =
1

a0
(t0 − t1) + . . . =

z

a0H0
+ . . .

Putting all together we find the famous Hubble law

H0 d = a0H0r1 = z ≃ vc , (27)

which is just a kinematical effect (we have not included yet any dynamics, i.e. the matter content of
the universe). Note that at low redshift(z ≪ 1), one is tempted to associate the observed change in
wavelength with a Doppler effect due to a hypothetical recession velocity of the distant galaxy. This
is only an approximation. In fact, the redshift cannot be ascribed to the relative velocity of the distant
galaxy because in general relativity (i.e. in curved spacetimes) one cannot compare velocities through
parallel transport, since the value depends on the path! If the distance to the galaxy is small, i.e.z ≪ 1,
the physical spacetime is not very different from Minkowskyand such a comparison is approximately
valid. As z becomes of order one, such a relation is manifestly false: galaxies cannot travel at speeds
greater than the speed of light; it is the stretching of spacetime which is responsible for the observed
redshift.

Fig. 2: The Type Ia supernovae observed nearby show a relationship between their absolute luminosity and the timescale of

their light curve: the brighter supernovae are slower and the fainter ones are faster. A simple linear relation between the absolute

magnitude and a “stretch factor” multiplying the light curve timescale fits the data quite well. From Ref. [7].

Hubble’s law has been confirmed by observations ever since the 1920s, with increasing precision,
which have allowed cosmologists to determine the Hubble parameterH0 with less and less systematic
errors. Nowadays, the best determination of the Hubble parameter was made by the Hubble Space
Telescope Key Project [8],H0 = 72 ± 8 km/s/Mpc. This determination is based on objects at distances
up to 500 Mpc, corresponding to redshiftsz ≤ 0.1.



Nowadays, we are beginning to probe much greater distances,corresponding toz ≃ 1, thanks to
type Ia supernovae. These are white dwarf stars at the end of their life cycle that accrete matter from
a companion until they become unstable and violently explode in a natural thermonuclear explosion
that out-shines their progenitor galaxy. The intensity of the distant flash varies in time, it takes about
three weeks to reach its maximum brightness and then it declines over a period of months. Although
the maximum luminosity varies from one supernova to another, depending on their original mass, their
environment, etc., there is a pattern: brighter explosionslast longer than fainter ones. By studying the
characteristic light curves, see Fig. 2, of a reasonably large statistical sample, cosmologists from the
Supernova Cosmology Project [7] and the High-redshift Supernova Project [9], are now quite confident
that they can use this type of supernova as a standard candle.Since the light coming from some of these
rare explosions has travelled a large fraction of the size ofthe universe, one expects to be able to infer
from their distribution the spatial curvature and the rate of expansion of the universe.

Fig. 3: Upper panel: The Hubble diagram in linear redshift scale. Supernovae with∆z < 0.01 of eachother have been

weighted-averaged binned. The solid curve represents the best-fit flat universe model,(ΩM = 0.25, ΩΛ = 0.75). Two other

cosmological models are shown for comparison,(ΩM = 0.25, ΩΛ = 0) and(ΩM = 1, ΩΛ = 0). Lower panel: Residuals of

the averaged data relative to an empty universe. From Ref. [7].

The connection between observations of high redshift supernovae and cosmological parameters
is done via the luminosity distance, defined as the distancedL at which a source of absolute luminosity
(energy emitted per unit time)L gives a flux (measured energy per unit time and unit area of thedetector)
F = L/4π d2L. One can then evaluate, within a given cosmological model, the expression fordL as a



function of redshift [10],

H0 dL(z) =
(1 + z)

|ΩK |1/2
sinn

[

∫ z

0

|ΩK |1/2 dz′
√

(1 + z′)2(1 + z′ΩM )− z′(2 + z′)ΩΛ

]

, (28)

wheresinn(x) = x if K = 0; sin(x) if K = +1 and sinh(x) if K = −1, and we have used the cosmic
sum rule (20).

Astronomers measure the relative luminosity of a distant object in terms of what they call the
effective magnitude, which has a peculiar relation with distance,

m(z) ≡M + 5 log10

[dL(z)

Mpc

]

+ 25 = M̄ + 5 log10[H0 dL(z)] . (29)

Since 1998, several groups have obtained serious evidence that high redshift supernovae appear fainter
than expected for either an open(ΩM < 1) or a flat(ΩM = 1) universe, see Fig. 3. In fact, the universe
appears to be accelerating instead of decelerating, as was expected from the general attraction of matter,
see Eq. (22); something seems to be acting as a repulsive force on very large scales. The most natural
explanation for this is the presence of a cosmological constant, a diffuse vacuum energy that permeates
all space and, as explained above, gives the universe an acceleration that tends to separate gravitationally
bound systems from each other. The best-fit results from the Supernova Cosmology Project [11] give a
linear combination

0.8ΩM − 0.6ΩΛ = −0.16 ± 0.05 (1σ),

which is now many sigma away from an EdS model withΛ = 0. In particular, for a flat universe this
gives

ΩΛ = 0.71 ± 0.05 and ΩM = 0.29 ± 0.05 (1σ).

Surprising as it may seem, arguments for a significant dark energy component of the universe where
proposed long before these observations, in order to accommodate the ages of globular clusters, as well
as a flat universe with a matter content below critical, whichwas needed in order to explain the observed
distribution of galaxies, clusters and voids.

Taylor expanding the scale factor to third order,

a(t)

a0
= 1 +H0(t− t0)−

q0
2!
H2

0 (t− t0)
2 +

j0
3!
H3

0 (t− t0)
3 +O(t− t0)

4 , (30)

where

q0 = −
ä

aH2
(t0) =

1

2

∑

i

(1 + 3wi)Ωi =
1

2
ΩM − ΩΛ , (31)

j0 = +

...
a

aH3
(t0) =

1

2

∑

i

(1 + 3wi)(2 + 3wi)Ωi = ΩM +ΩΛ , (32)

are the deceleration and “jerk” parameters. Substituting into Eq. (28) we find

H0 dL(z) = z +
1

2
(1− q0) z

2 − 1

6
(1− q0 − 3q20 + j0) z

3 +O(z4) . (33)

This expression goes beyond the leading linear term, corresponding to the Hubble law, into the second
and third order terms, which are sensitive to the cosmological parametersΩM andΩΛ. It is only recently
that cosmological observations have gone far enough back into the early universe that we can begin to
probe these terms, see Fig. 4.

This extra component of the critical density would have to resist gravitational collapse, otherwise
it would have been detected already as part of the energy in the halos of galaxies. However, if most of the
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Kinematic models of the expansion history are shown relative to an eternally coasting modelq(z) = 0. From Ref. [12].

energy of the universe resists gravitational collapse, it is impossible for structure in the universe to grow.
This dilemma can be resolved if the hypothetical dark energywas negligible in the past and only recently
became the dominant component. According to general relativity, this requires that the dark energy have
negative pressure, since the ratio of dark energy to matter density goes likea(t)−3p/ρ. This argument
would rule out almost all of the usual suspects, such as cold dark matter, neutrinos, radiation, and kinetic
energy, since they all have zero or positive pressure. Thus,we expect something like a cosmological
constant, with a negative pressure,p ≈ −ρ, to account for the missing energy.

However, if the universe was dominated by dark matter in the past, in order to form structure, and
only recently became dominated by dark energy, we must be able to see the effects of the transition from
the deceleration into the acceleration phase in the luminosity of distant type Ia supernovae. This has been
searched for since 1998, when the first convincing results onthe present acceleration appeared. However,
only recently [12] do we have clear evidence of this transition point in the evolution of the universe. This
coasting pointis defined as the time, or redshift, at which the decelerationparameter vanishes,

q(z) = −1 + (1 + z)
d

dz
lnH(z) = 0 , (34)

where

H(z) = H0

[

ΩM (1 + z)3 +Ωx e
3
∫ z

0
(1+wx(z′))

dz′

1+z′ +ΩK(1 + z)2
]1/2

, (35)

and we have assumed that the dark energy is parametrized by a density Ωx today, with a redshift-
dependent equation of state,wx(z), not necessarily equal to−1. Of course, in the case of a true cosmo-
logical constant, this reduces to the usual expression.

Let us suppose for a moment that the barotropic parameterw is constant, then the coasting redshift
can be determined from

q(z) =
1

2

[ ΩM + (1 + 3w)Ωx (1 + z)3w

ΩM +Ωx (1 + z)3w +ΩK(1 + z)−1

]

= 0 , (36)



⇒ zc =

(

(3|w| − 1)Ωx

ΩM

)

1
3|w|

− 1 , (37)

which, in the case of a true cosmological constant, reduces to

zc =
(2ΩΛ

ΩM

)1/3
− 1 . (38)

When substitutingΩΛ ≃ 0.7 andΩM ≃ 0.3, one obtainszc ≃ 0.6, in excellent agreement with recent
observations [12]. The plane(ΩM , ΩΛ) can be seen in Fig. 5, which shows a significant improvement
with respect to previous data.

Fig. 5: The recent supernovae data on the(ΩM , ΩΛ) plane. Shown are the 1-, 2- and 3-σ contours, as well as the data from

1998, for comparison. It is clear that the old EdS cosmological model at(ΩM = 1, ΩΛ = 0) is many standard deviations away

from the data. From Ref. [12].

Now, if we have to live with this vacuum energy, we might as well try to comprehend its origin.
For the moment it is a complete mystery, perhaps the biggest mystery we have in physics today [13].
We measure its value but we don’t understand why it has the value it has. In fact, if we naively predict
it using the rules of quantum mechanics, we find a number that is many (many!) orders of magnitude
off the mark. Let us describe this calculation in some detail. In non-gravitational physics, the zero-point
energy of the system is irrelevant because forces arise fromgradients of potential energies. However, we
know from general relativity that even a constant energy density gravitates. Let us write down the most
general energy momentum tensor compatible with the symmetries of the metric and that is covariantly
conserved. This is precisely of the formT (vac)

µν = pV gµν = − ρV gµν , see Fig. 6. Substituting into



the Einstein equations (1), we see that the cosmological constant and the vacuum energy are completely
equivalent,Λ = 8πGρV , so we can measure the vacuum energy with the observations ofthe acceleration
of the universe, which tells us thatΩΛ ≃ 0.7.

On the other hand, we can estimate the contribution to the vacuum energy coming from the quan-
tum mechanical zero-point energy of the quantum oscillators associated with the fluctuations of all quan-
tum fields,

ρthV =
∑

i

∫ ΛUV

0

d2k

(2π)3
1

2
h̄ωi(k) =

h̄Λ4
UV

16π2

∑

i

(−1)FNi +O(m2
iΛ

2
UV ) , (39)

whereΛUV is the ultraviolet cutoff signaling the scale of new physics. Taking the scale of quantum grav-
ity, ΛUV = MP l, as the cutoff, and barring any fortuituous cancellations,then the theoretical expectation
(39) appears to be 120 orders of magnitude larger than the observed vacuum energy associated with the
acceleration of the universe,

ρthV ≃ 1.4× 1074 GeV4 = 3.2 × 1091 g/cm3 , (40)

ρobsV ≃ 0.7 ρc = 0.66 × 10−29 g/cm3 = 2.9× 10−11 eV4 . (41)

Even if we assumed that the ultraviolet cutoff associated with quantum gravity was as low as the elec-
troweak scale (and thus around the corner, liable to be explored in the LHC), the theoretical expectation
would still be 60 orders of magnitude too big. This is by far the worst mismatch between theory and
observations in all of science. There must be something seriously wrong in our present understanding of
gravity at the most fundamental level. Perhaps we don’t understand the vacuum and its energy does not
gravitate after all, or perhaps we need to impose a new principle (or a symmetry) at the quantum gravity
level to accommodate such a flagrant mismatch.

Fig. 6: Ordinary matter dilutes as it expands. According to the second law of Thermodynamics, its pressure on the walls should

be positive, which excerts a force, and energy is lost in the expansion. On the other hand, vacuum energy is always the same,

independent of the volume of the region, and thus, accordingto the second law, its pressure must be negative and of the same

magnitude as the energy density. This negative pressure means that the volume tends to increase more and more rapidly, which

explains the exponential expansion of the universe dominated by a cosmological constant.

In the meantime, one can at least parametrize our ignorance by making variations on the idea of a
constantvacuum energy. Let us assume that it actually evolves slowlywith time. In that case, we do not



expect the equation of statep = −ρ to remain true, but instead we expect the barotropic parameterw(z)
to depend on redshift. Such phenomenological models have been proposed, and until recently produced
results that were compatible withw = −1 today, but with enough uncertainty to speculate on alternatives
to a truly constant vacuum energy. However, with the recent supernovae results [12], there seems to be
little space for variations, and models of a time-dependentvacuum energy are less and less favoured. In
the near future, the SNAP satellite [14] will measure several thousand supernovae at high redshift and
therefore map the redshift dependence of both the dark energy density and its equation of state with great
precision. This will allow a much better determination of the cosmological parametersΩM andΩΛ.

2.5 Thermodynamics of an expanding plasma

In this section I will describe the main concepts associatedwith ensembles of particles in thermal equi-
librium and the brief periods in which the universe fell out of equilibrium. To begin with, let me make
contact between the covariant energy conservation law (7) and the second law of thermodynamics,

T dS = dU + p dV , (42)

whereU = ρV is the total energy of the fluid, andp = w ρ is its barotropic pressure. Taking a comoving
volume for the universe,V = a3, we find

T
dS

dt
=

d

dt
(ρ a3) + p

d

dt
(a3) = 0 , (43)

where we have used (7). Therefore, entropy is conserved during the expansion of the universe,dS = 0;
i.e., the expansion is adiabatic even in those epochs in which the equation of state changes, like in the
matter-radiation transition (not a proper phase transition). Using (7), we can write

d

dt
ln(ρ a3) = −3H w . (44)

Thus, our universe expands like a gaseous fluid in thermal equilibrium at a temperatureT . This tem-
perature decreases like that of any expanding fluid, in a way that is inversely proportional to the cubic
root of the volume. This implies that in the past the universewas necessarily denser and hotter. As we
go back in time we reach higher and higher temperatures, which implies that the mean energy of plasma
particles is larger and thus certain fundamental reactionsare now possible and even common, giving rise
to processes that today we can only attain in particle physics accelerators. That is the reason why it is
so important, for the study of early universe, to know the nature of the fundamental interactions at high
energies, and the basic connection between cosmology and high energy particle physics. However, I
should clarify a misleading statement that is often used: “high energy particle physics colliders repro-
duce the early universe” by inducing collisions among relativistic particles. Although the energies of
some of the interactions at those collisions reach similar values as those attained in the early universe,
the physical conditions are rather different. The interactions within the detectors of the great particle
physics accelerators occur typically in the perturbative regime, locally, and very far from thermal equi-
librium, lasting a minute fraction of a second; on the other hand, the same interactions occurred within
a hot plasma in equilibrium in the early universe while it wasexpanding adiabatically and its duration
could be significantly larger, with a distribution in energythat has nothing to do with those associated
with particle accelerators. What is true, of course, is thatthe fundamental parameters corresponding to
those interactions−masses and couplings− are assumed to be the same, and therefore present terrestrial
experiments can help us imagine what it could have been like in the early universe, and make predictions
about the evolution of the universe, in the context of an expanding plasma a high temperatures and high
densities, and in thermal equilibrium.



2.51 Fluids in thermal equilibrium

In order to understand the thermodynamical behaviour of a plasma of different species of particles at high
temperatures we will consider a gas of particles withg internal degrees of freedom weakly interacting.
The degrees of freedom corresponding to the different particles can be seen in Table 1. For example,
leptons and quarks have 4 degrees of freedom since they correspond to the two helicities for both particle
and antiparticle. However, the nature of neutrinos is stillunknown. If they happen to be Majorana
fermions, then they would be their own antiparticle and the number of degrees of freedom would reduce
to 2. For photons and gravitons (without mass) their 2 d.o.f.correspond to their states of polarization.
The 8 gluons (also without mass) are the gauge bosons responsible for the strong interaction betwen
quarks, and also have 2 d.o.f. each. The vector bosonsW± andZ0 are massive and thus, apart from the
transverse components of the polarization, they also have longitudinal components.

Particle Spin Degrees of freedom (g) Nature

Higgs 0 1 Massive scalar

photon 1 2 Massless vector

graviton 2 2 Massless tensor

gluon 1 2 Massless vector

W y Z 1 3 Massive vector

leptons & quarks 1/2 4 Dirac Fermion

neutrinos 1/2 4 (2) Dirac (Majorana) Fermion

Table 1: The internal degrees of freedom of various fundamental particles.

For each of these particles we can compute the number densityn, the energy densityρ and the
pressurep, in thermal equilibrium at a given temperatureT ,

n = g

∫

d3p

(2π)3
f(p) , (45)

ρ = g

∫

d3p

(2π)3
E(p) f(p) , (46)

p = g

∫

d3p

(2π)3
|p|2
3E

f(p) , (47)

where the energy is given byE2 = |p|2 + m2 and the momentum distribution in thermal (kinetic)
equilibrium is

f(p) =
1

e(E−µ)/T ± 1

{

−1 Bose − Einstein

+1 Fermi−Dirac
(48)

The chemical potentialµ is conserved in these reactions if they are in thermal equilibrium. For example,
for reactions of the typei + j ←→ k + l , we haveµi + µj = µk + µl. For example, the chemical
potencial of the photon vanishesµγ = 0, and thus particles and antiparticles have opposite chemical
potentials.

From the equilibrium distributions one can obtain the number densityn, the energyρ and the
pressurep, of a particle of massm with chemical potentialµ at the temperatureT ,

n =
g

2π2

∫ ∞

m
dE

E(E2 −m2)1/2

e(E−µ)/T ± 1
, (49)



ρ =
g

2π2

∫ ∞

m
dE

E2(E2 −m2)1/2

e(E−µ)/T ± 1
, (50)

p =
g

6π2

∫ ∞

m
dE

(E2 −m2)3/2

e(E−µ)/T ± 1
. (51)

For a non-degenerate (µ≪ T ) relativistic gas (m≪ T ), we find

n =
g

2π2

∫ ∞

0

E2 dE

eE/T ± 1
=















ζ(3)

π2
g T 3 Bosons

3

4

ζ(3)

π2
g T 3 Fermions

, (52)

ρ =
g

2π2

∫ ∞

0

E3 dE

eE/T ± 1
=



















π2

30
g T 4 Bosons

7

8

π2

30
g T 4 Fermions

, (53)

p =
1

3
ρ , (54)

whereζ(3) = 1.20206 . . . is the Riemann Zeta function. For relativistic fluids, the energy density per
particle is

〈E〉 ≡ ρ

n
=



















π4

30ζ(3)
T ≃ 2.701T Bosons

7π2

180ζ(3)
T ≃ 3.151T Fermions

(55)

For relativistic bosons or fermions withµ < 0 and|µ| < T , we have

n =
g

π2
T 3 eµ/T , (56)

ρ =
3g

π2
T 4 eµ/T , (57)

p =
1

3
ρ . (58)

For a bosonic particle, a positive chemical potential,µ > 0, indicates the presence of a Bose-Einstein
condensate, and should be treated separately from the rest of the modes.

On the other hand, for a non-relativistic gas (m≫ T ), with arbitrary chemical potentialµ, we find

n = g

(

mT

2π

)3/2

e−(m−µ)/T , (59)

ρ = mn , (60)

p = nT ≪ ρ . (61)

The average energy density per particle is

〈E〉 ≡ ρ

n
= m+

3

2
T . (62)

Note that, at any given temperatureT , the contribution to the energy density of the universe coming
from non-relativistic particles in thermal equilibrium isexponentially supressed with respect to that of



relativistic particles, therefore we can write

ρR =
π2

30
g∗ T

4 , pR =
1

3
ρR , (63)

g∗(T ) =
∑

bosons

gi

(

Ti

T

)4

+
7

8

∑

fermions

gi

(

Ti

T

)4

, (64)

where the factor7/8 takes into account the difference between the Fermi and Bosestatistics;g∗ is the
total number of light d.o.f. (m ≪ T ), and we have also considered the possibility that particlespeciesi
(bosons or fermions) have an equilibrium distribution at a temperatureTi different from that of photons,
as happens for example when a given relativistic species decouples from the thermal bath, as we will
discuss later. This number,g∗, strongly depends on the temperature of the universe, sinceas it expands
and cools, different particles go out of equilibrium or become non-relativistic (m≫ T ) and thus become
exponentially suppressed from that moment on. A plot of the time evolution ofg∗(T ) can be seen in
Fig. 7.

Fig. 7: the light degrees of freedomg∗ andg∗S as a function of the temperature of the universe. From Ref. [15].

For example, forT ≪ 1 MeV, i.e. after the time of primordial Big Bang Nucleosynthesis (BBN)
and neutrino decoupling, the only relativistic species arethe 3 light neutrinos and the photons; since the
temperature of the neutrinos isTν = (4/11)1/3Tγ = 1.90 K, see below, we haveg∗ = 2 + 3 × 7

4 ×
(

4
11

)4/3
= 3.36, while g∗S = 2 + 3× 7

4 ×
(

4
11

)

= 3.91.

For 1 MeV≪ T ≪ 100 MeV, i.e. between BBN and the phase transition from a quark-gluon
plasma to hadrons and mesons, we have, as relativistic species, apart from neutrinos and photons, also
the electrons and positrons, sog∗ = 2 + 3× 7

4 + 2× 7
4 = 10.75.

ForT ≫ 250 GeV, i.e. above the electroweak (EW) symmetry breaking scale, we have one photon
(2 polarizations), 8 gluons (massless), theW± andZ0 (massive), 3 families of quarks & leptones, a Higgs
(still undiscovered), with which one findsg∗ = 427

4 = 106.75.

At temperatures well above the electroweak transition we ignore the number of d.o.f. of particles,
since we have never explored those energies in particle physics accelerators. Perhaps in the near future,
with the results of the Large Hadron Collider (LHC) at CERN, we may may predict the behaviour of the
universe at those energy scales. For the moment we even ignore whether the universe was in thermal
equilibrium at those temperatures. The highest energy scale at which we can safely say the universe



was in thermal equilibrium is that of BBN, i.e. 1 MeV, due to the fact that we observe the present
relative abundances of the light element produced at that time. For instance, we can’t even claim that the
universe went through the quark-gluon phase transtion, at∼ 200 MeV, since we have not observed yet
any signature of such an event, not to mention the electroweak phase transition, at∼ 1 TeV.

Let us now use the relation between the rate of expansion and the temperature of relativistic parti-
cles to obtain the time scale of the universe as a function of its temperature,

H = 1.66 g
1/2
∗

T 2

MP
=

1

2t
=⇒ t = 0.301 g

−1/2
∗

MP

T 2
∼
(

T

MeV

)−2

s , (65)

thus, e.g. at the EW scale (100 GeV) the universe was just10−10 s old, while during the primordial BBN
(1− 0.1 MeV), it was 1 s to 3 min old.

2.52 The entropy of the universe

During most of the history of the universe, the rates of reaction, Γint, of particles in the thermal bath
are much bigger than the rate of expansion of the universe,H, so that local thermal equilibrium was
mantained. In this case, the entropy per comoving volume remained constant. In an expanding universe,
the second law of thermodynamics, applied to the element of comoving volume, of unit coordinate
volume and physical volumeV = a3, can be written as, see (42),

T dS = d(ρV ) + p dV = d[(ρ+ p)V ]− V dp . (66)

Using the Maxwell condition of integrability,
∂2S

∂T∂V
=

∂2S

∂V ∂T
, we find thatdp = (ρ+ p)dT/T , so that

dS = d

[

(ρ+ p)
V

T
+ const.

]

, (67)

i.e. the entropy in a comoving volume isS = (ρ+ p)VT , except for a constant. Using now the first law,
the covariant conservation of energy,T µν

;ν = 0, we have

d
[

(ρ+ p)V
]

= V dp =⇒ d
(

(ρ+ p)
V

T

)

= 0 , (68)

and thus, in thermal equilibrium, the total entropy in a comoving volume,S = a3(ρ + p)/T , is con-
served. During most of the evolution of the universe, this entropy was dominated by the contribution
from relativistic particles,

S =
2π2

45
g∗S (aT )3 = const. , (69)

g∗(T ) =
∑

bosons

gi

(

Ti

T

)3

+
7

8

∑

fermions

gi

(

Ti

T

)3

, (70)

whereg∗S is the number of “entropic” degrees of freedom, as we can see in Fig. 7. Above the electron-
positron annihilation, all relativistic particles had thesame temperature and thusg∗S = g∗. It may be also
useful to realize that the entropy density,s = S/a3, is propotional to the number density of relativistic
particles, and in particular to the number density of photons, s = 1.80g∗S nγ ; today, s = 7.04nγ .
However, sinceg∗S in general is a function of temperature, we can’t always interchanges andnγ .

The conservation ofS implies that the entropy density satisfiess ∝ a−3, and thus the physical size
of the comoving volume isa3 ∝ s−1; therefore, the number of particles of a given species in a comoving



volume,N = a3n, is proportional to the number density of that species over the entropy densitys,

N ∼ n

s
=



















45ζ(3) g

2π4 g∗S
T ≫ m, µ

45 g

4π5
√
2 g∗S

(m

T

)3/2
e−

m−µ
T T ≪ m

(71)

If this number does not change, i.e. if those particles are neither created nor destroyed, thenn/s remains
constant. As a useful example, we will consider the barionicnumber in a comoving volume,

nB

s
≡ nb − nb̄

s
. (72)

As long as the interactions that violate barion number occursufficiently slowly, the barionic number per
comoving volume,nB/s, will remain constant. Although

η ≡ nB

nγ
= 1.80 g∗S

nB

s
, (73)

the ratio between barion and photon numbers it does not remain constant during the whole evolution
of the universe sinceg∗S varies; e.g. during the annihilation of electrons and positrons, the number of
photons per comoving volume,Nγ = a3 nγ , grows a factor11/4, andη decreases by the same factor.
After this epoch, however,g∗ is constant so thatη ≃ 7nB/s andnB/s can be used indistinctly.

Another consequence of Eq, (69) is thatS = const. implies that the temperature of the universe
evolves as

T ∝ g
−1/3
∗S a−1 . (74)

As long asg∗S remains constant, we recover the well known result that the universe cools as it expands
according toT ∝ 1/a. The factorg−1/3

∗S appears because when a species becomes non-relativistic (when
T ≤ m), and effectively disappears from the energy density of theuniverse, its entropy is transferred
to the rest of the relativistic particles in the plasma, making T decrease not as quickly as1/a, until g∗S
again becomes constant.

From the observational fact that the universe expands todayone can deduce that in the past it must
have been hotter and denser, and that in the future it will be colder and more dilute. Since the ratio of
scale factors is determined by the redshift parameterz, we can obtain (to very good approximation) the
temperature of the universe in the past with

T = T0 (1 + z) . (75)

This expression has been spectacularly confirmed thanks to the absorption spectra of distant quasars [16].
These spectra suggest that the radiation background was acting as a thermal bath for the molecules in the
interstellar medium with a temperature of 9 K at a redshiftz ∼ 2, and thus that in the past the photon
background was hotter than today. Furthermore, observations of the anisotropies in the microwave back-
ground confirm that the universe at a redshiftz = 1089 had a temperature of0.3 eV, in agreement with
Eq. (75).

2.6 The thermal evolution of the universe

In a strict mathematical sense, it is impossible for the universe to have been always in thermal equilibrium
since the FRW model does not have a timelike Killing vector. In practice, however, we can say that
the universe has been most of its history very close to thermal equilibrium. Of course, those periods
in which there were deviations from thermal equilibrium have been crucial for its evolution thereafter
(e.g. baryogenesis, QCD transition, primordial nucleosynthesis, recombination, etc.); without these the
universe today would be very different and probably we wouldnot be here to tell the story.



The key to understand the thermal history of the universe is the comparison between the rates of
interaction between particles (microphysics) and the rateof expansion of the universe (macrophysics).
Ignoring for the moment the dependence ofg∗ on temperature, the rate of change ofT is given directly
by the rate of expansion,̇T/T = −H. As long as the local interactions− necessary in order that the
particle distribution function adjustsadiabatically to the change of temperature− are sufficiently fast
compared with the rate of expansion of the universe, the latter will evolve as a succession of states very
close to thermal equilibrium, with a temperature proportional toa−1. If we evaluate the interaction rates
as

Γint ≡ 〈nσ |v|〉 , (76)

wheren(t) is the number density of target particles,σ is the cross section on the interaction andv is the
relative velocity of the reaction, all averaged on a thermaldistribution; then a rule of thumb for ensuring
that thermal equilibrium is maintained is

Γint ∼> H . (77)

This criterium is understandable. Suppose, as often occurs, that the interaction rate in thermal equilib-
rium isΓint ∝ T n, with n > 2; then, the number of interactions of a particle after timet is

Nint =

∫ ∞

t
Γint(t

′)dt′ =
1

n− 2

Γint

H
(t) , (78)

therefore the particle interacts less than once from the moment in whichΓint ≈ H. If Γint ∼> H, the
species remains coupled to the thermal plasma. This doesn’tmean that, necessarily, the particle is out
of local thermal equilibrium, since we have seen already that relativistic particles that have decoupled
retain their equilibrium distribution, only at a differenttemperature from that of the rest of the plasma.

In order to obtain an approximate description of the decoupling of a particle species in an expand-
ing universe, let us consider two types of interaction:

i) interactions mediated by massless gauge bosons, like forexample the photon. In this case, the cross
section for particles with significant momentum transfer can be written asσ ∼ α2/T 2, with α = g2/4π
the coupling constant of the interaction. Assuming local thermal equilibrium,n(t) ∼ T 3 and thus the
interaction rate becomesΓ ∼ nσ |v| ∼ α2 T . Therefore,

Γ

H
∼ α2 MP

T
, (79)

so that for temperatures of the universeT ∼< α2 MP ∼ 1016 GeV, the reactions are fast enough and the
plasma is in equilibrium, while forT ∼> 1016 GeV, reactions are too slow to maintain equilibrium and
it is said that they are “frozen-out”. An important consequence of this result is that the universe could
never have been in thermal equilibrium above the grand unification (GUT) scale.

ii) interactions mediated by massive gauge bosons, e.g. like theW± andZ0, or those responsible for the
GUT interactions,X andY . We will generically call themX bosons. The cross section depends rather
strongly on the temperature of the plasma,

σ ∼















G2
XT 2 T ≪MX

α2

T 2
T ≫MX

(80)

whereGX ∼ α/M2
X is the effective coupling constant of the interaction at energies well below the mass

of the vector boson, analogous to the Fermi constant of the electroweak interaction,GF = g2/(4
√
2M2

W )
at tree level. Note that forT ≫ MX we recover the result for massless bosons, so we will concentrate
here on the other case. ForT ≤MX , the rate of thermal interactions isΓ ∼ nσ |v| ∼ G2

X T 5. Therefore,

Γ

H
∼ G2

X MP T 3 , (81)



such that at temperatures in the range

MX ∼> T ∼> G
−2/3
X M

−1/3
P ∼

(

MX

100 GeV

)4/3

MeV , (82)

reactions occur so fast that the plasma is in thermal equilibrium, while forT ∼< (MX/100 GeV)4/3 MeV,
those reactions are too slow for maintaining equilibrium and they effective freeze-out, see Eq. (78).

2.61 The decoupling of relativistic particles

Those relativistic particles that have decoupled from the thermal bath do not participate in the transfer of
entropy when the temperature of the universe falls below themass thershold of a given speciesT ≃ m; in
fact, the temperature of the decoupled relativistic species falls asT ∝ 1/a, as we will now show. Suppose
that a relativistic particle is initially in local thermal equilibrium, and that it decoples at a temperature
TD and timetD. The phase space distribution at the time of decoupling is given by the equilibrium
distribution,

f(p, tD) =
1

eE/TD ± 1
. (83)

After decoupling, the energy of each massless particle suffers redshift,E(t) = ED (aD/a(t)). The
number density of particles also decreases,n(t) = nD (aD/a(t))

3. Thus, the phase space distribution at
a timet > tD is

f(p, t) =
d3n

d3p
= f(p

a

aD
, tD) =

1

eEa/aDTD ± 1
=

1

eE/T ± 1
, (84)

so that we conclude that the distribution function of a particle that has decoupled while being relativistic
remains self-similar as the universe expands, with a temperature that decreases as

T = TD
aD
a
∝ a−1 , (85)

andnot asg−1/3
∗S a−1, like the rest of the plasma in equilibrium (74).

2.62 The decoupling of non-relativistic particles

Those particles that decoupled from the thermal bath when they were non-relativistic (m ≫ T ) behave
differently. Let us study the evolution of the distributionfunction of a non-relativistic particle that was
in local thermal equilibrium at a timetD, when the universe had a temperatureTD. The moment of
each particle suffers redshift as the universe expands,|p| = |pD| (aD/a), see Eq. (24). Therefore, their
kinetic energy satisfiesE = ED (aD/a)

2. On the other hand, the particle number density also varies,
n(t) = nD (aD/a(t))

3, so that a decoupled non-relativistic particle will have anequilibrium distribution
function characterized by a temperature

T = TD
a2D
a2
∝ a−2 , (86)

and a chemical potential

µ(t) = m+ (µD −m)
T

TD
, (87)

whose variation is precisely that which is needed for the number density of particle to decrease asa−3.

In summary, a particle species that decouples from the thermal bath follows an equilibrium dis-
tribution function with a temperature that decreases likeTR ∝ a−1 for relativistic particles (TD ≫ m)
or like TNR ∝ a−2 for non-relativistic particles (TD ≪ m). On the other hand, for semi-relativistic
particles (TD ∼ m), its phase space distributiondoes not maintainan equilibrium distribution function,
and should be computed case by case.



2.63 Brief thermal history of the universe

I will briefly summarize here the thermal history of the universe, from the Planck era to the present. As
we go back in time, the universe becomes hotter and hotter andthus the amount of energy available for
particle interactions increases. As a consequence, the nature of interactions goes from those described at
low energy by long range gravitational and electromagneticphysics, to atomic physics, nuclear physics,
all the way to high energy physics at the electroweak scale, gran unification (perhaps), and finally quan-
tum gravity. The last two are still uncertain since we do not have any experimental evidence for those
ultra high energy phenomena, and perhaps Nature has followed a different path.

The way we know about the high energy interactions of matter is via particle accelerators, which
are unravelling the details of those fundamental interactions as we increase in energy. However, one
should bear in mind that the physical conditions that take place in our high energy colliders are very
different from those that occurred in the early universe. These machines could never reproduce the
conditions of density and pressure in the rapidly expandingthermal plasma of the early universe. Nev-
ertheless, those experiments are crucial in understandingthe nature andrate of the local fundamental
interactions available at those energies. What interests cosmologists is the statistical and thermal proper-
ties that such a plasma should have, and the role that causal horizons play in the final outcome of the early
universe expansion. For instance, of crucial importance isthe time at which certain particlesdecoupled
from the plasma, i.e. when their interactions were not quickenough compared with the expansion of the
universe, and they were left out of equilibrium with the plasma.

One can trace the evolution of the universe from its origin till today. There is still some speculation
about the physics that took place in the universe above the energy scales probed by present colliders.
Nevertheless, the overall layout presented here is a plausible and hopefully testable proposal. According
to the best accepted view, the universe must have originatedat the Planck era (1019 GeV, 10−43 s)
from a quantum gravity fluctuation. Needless to say, we don’thave any experimental evidence for such
a statement: Quantum gravity phenomena are still in the realm of physical speculation. However, it
is plausible that a primordial era of cosmologicalinflation originated then. Its consequences will be
discussed below. Soon after, the universe may have reached the Grand Unified Theories (GUT) era (1016

GeV, 10−35 s). Quantum fluctuations of the inflaton field most probably left their imprint then as tiny
perturbations in an otherwise very homogenous patch of the universe. At the end of inflation, the huge
energy density of the inflaton field was converted into particles, which soon thermalized and became the
origin of the hot Big Bang as we know it. Such a process is called reheatingof the universe. Since
then, the universe became radiation dominated. It is probable (although by no means certain) that the
asymmetry between matter and antimatter originated at the same time as the rest of the energy of the
universe, from the decay of the inflaton. This process is known under the name ofbaryogenesissince
baryons (mostly quarks at that time) must have originated then, from the leftovers of their annihilation
with antibaryons. It is a matter of speculation whether baryogenesis could have occurred at energies
as low as the electroweak scale (100 GeV, 10−10 s). Note that although particle physics experiments
have reached energies as high as 100 GeV, we still do not have observational evidence that the universe
actually went through the EW phase transition. If confirmed,baryogenesis would constitute another
“window” into the early universe. As the universe cooled down, it may have gone through the quark-
gluon phase transition (102 MeV, 10−5 s), when baryons (mainly protons and neutrons) formed from
their constituent quarks.

The furthest window we have on the early universe at the moment is that ofprimordial nucleosyn-
thesis(1 − 0.1 MeV, 1 s – 3 min), when protons and neutrons were cold enough that bound systems
could form, giving rise to the lightest elements, soon afterneutrino decoupling: It is the realm of nuclear
physics. The observed relative abundances of light elements are in agreement with the predictions of the
hot Big Bang theory. Immediately afterwards, electron-positron annihilation occurs (0.5 MeV, 1 min)
and all their energy goes into photons. Much later, at about (1 eV,∼ 105 yr), matter and radiation have
equal energy densities. Soon after, electrons become boundto nuclei to form atoms (0.3 eV,3 × 105



yr), in a process known asrecombination: It is the realm of atomic physics. Immediately after, photons
decouple from the plasma, travelling freely since then. Those are the photons we observe as the cosmic
microwave background. Much later (∼ 1−10 Gyr), the small inhomogeneities generated during inflation
have grown, via gravitational collapse, to become galaxies, clusters of galaxies, and superclusters, char-
acterizing the epoch ofstructure formation. It is the realm of long range gravitational physics, perhaps
dominated by a vacuum energy in the form of a cosmological constant. Finally (3K, 13 Gyr), the Sun,
the Earth, and biological life originated from previous generations of stars, and from a primordial soup
of organic compounds, respectively.

I will now review some of the more robust features of the Hot Big Bang theory of which we have
precise observational evidence.

2.64 Primordial nucleosynthesis and light element abundance

In this subsection I will briefly review Big Bang nucleosynthesis and give the present observational
constraints on the amount of baryons in the universe. In 1920Eddington suggested that the sun might
derive its energy from the fusion of hydrogen into helium. The detailed reactions by which stars burn
hydrogen were first laid out by Hans Bethe in 1939. Soon afterwards, in 1946, George Gamow realized
that similar processes might have occurred also in the hot and dense early universe and gave rise to the
first light elements [4]. These processes could take place when the universe had a temperature of around
T

NS
∼ 1 − 0.1 MeV, which is about 100 times the temperature in the core of the Sun, while the density

is ρNS = π2

30 g∗T
4
NS
∼ 82 g cm−3, about the same density as the core of the Sun. Note, however,that

although both processes are driven by identical thermonuclear reactions, the physical conditions in star
and Big Bang nucleosynthesis are very different. In the former, gravitational collapse heats up the core of
the star and reactions last for billions of years (except in supernova explosions, which last a few minutes
and creates all the heavier elements beyond iron), while in the latter the universe expansion cools the hot
and dense plasma in just a few minutes. Nevertheless, Gamow reasoned that, although the early period of
cosmic expansion was much shorter than the lifetime of a star, there was a large number of free neutrons
at that time, so that the lighter elements could be built up quickly by succesive neutron captures, starting
with the reactionn + p→ D + γ. The abundances of the light elements would then be correlated with
their neutron capture cross sections, in rough agreement with observations [6, 17].

Nowadays, Big Bang nucleosynthesis (BBN) codes compute a chain of around 30 coupled nuclear
reactions [18], to produce all the light elements up to beryllium-7. 3 Only the first four or five elements
can be computed with accuracy better than 1% and compared with cosmological observations. These
light elements areH, 4He,D, 3He, 7Li, and perhaps also6Li. Their observed relative abundance to
hydrogen is[1 : 0.25 : 3 · 10−5 : 2 · 10−5 : 2 · 10−10] with various errors, mainly systematic. The BBN
codes calculate these abundances using the laboratory measured nuclear reaction rates, the decay rate of
the neutron, the number of light neutrinos and the homogeneous FRW expansion of the universe, as a
function ofonly one variable, the number density fraction of baryons to photons,η ≡ nB/nγ . In fact,
the present observations are only consistent, see Fig. 8 andRef. [17, 18, 19], with a very narrow range of
values of

η10 ≡ 1010 η = 6.2± 0.6 . (88)

Such a small value ofη indicates that there is about one baryon per109 photons in the universe today.
Any acceptable theory of baryogenesis should account for such a small number. Furthermore, the present
baryon fraction of the critical density can be calculated from η10 as

ΩBh
2 = 3.6271 × 10−3 η10 = 0.0224 ± 0.0022 (95% c.l.) (89)

Clearly, this number is well below closure density, so baryons cannot account for all the matter in the
universe, as I shall discuss below.

3The rest of nuclei, up to iron (Fe), are produced in heavy stars, and beyond Fe in novae and supernovae explosions.



Fig. 8: The relative abundance of light elements to Hidrogen. Note the large range of scales involved. From Ref. [17].

2.65 Neutrino decoupling

Just before the nucleosynthesis of the lightest elements inthe early universe, weak interactions were too
slow to keep neutrinos in thermal equilibrium with the plasma, so they decoupled. We can estimate the
temperature at which decoupling occurred from the weak interaction cross section,σw ≃ G2

FT
2 at finite

temperatureT , whereGF = 1.2× 10−5 GeV−2 is the Fermi constant. The neutrino interaction rate, via
W boson exchange inn+ ν ↔ p+ e− and p+ ν̄ ↔ n+ e+, can be written as [15]

Γν = nν〈σw|v|〉 ≃ G2
FT

5 , (90)

while the rate of expansion of the universe at that time (g∗ = 10.75) wasH ≃ 5.4 T 2/MP, where
MP = 1.22 × 1019 GeV is the Planck mass. Neutrinos decouple when their interaction rate is slower
than the universe expansion,Γν ≤ H or, equivalently, atTν−dec ≃ 0.8 MeV. Below this temperature,
neutrinos are no longer in thermal equilibrium with the restof the plasma, and their temperature continues
to decay inversely proportional to the scale factor of the universe. Since neutrinos decoupled before
e+e− annihilation, the cosmic background of neutrinos has a temperature today lower than that of the
microwave background of photons. Let us compute the difference. At temperatures above the the mass
of the electron,T > me = 0.511 MeV, and below 0.8 MeV, the only particle species contributing to
the entropy of the universe are the photons (g∗ = 2) and the electron-positron pairs (g∗ = 4 × 7

8 ); total
number of degrees of freedomg∗ = 11

2 . At temperaturesT ≃ me, electrons and positrons annihilate into
photons, heating up the plasma (but not the neutrinos, whichhad decoupled already). At temperatures
T < me, only photons contribute to the entropy of the universe, with g∗ = 2 degrees of freedom.



Therefore, from the conservation of entropy, we find that theratio ofTγ andTν today must be

Tγ

Tν
=
(11

4

)1/3
= 1.401 ⇒ Tν = 1.945 K , (91)

where I have usedT
CMB

= 2.725 ± 0.002 K. We still have not measured such a relic background of
neutrinos, and probably will remain undetected for a long time, since they have an average energy of
order10−4 eV, much below that required for detection by present experiments (of order GeV), precisely
because of the relative weakness of the weak interactions. Nevertheless, it would be fascinating if, in the
future, ingenious experiments were devised to detect such abackground, since it would confirm one of
the most robust features of Big Bang cosmology.

2.66 Matter-radiation equality

Relativistic species have energy densities proportional to the quartic power of temperature and therefore
scale asρR ∝ a−4, while non-relativistic particles have essentially zero pressure and scale asρM ∝ a−3.
Therefore, there will be a time in the evolution of the universe in which both energy densities are equal
ρR(teq) = ρM(teq). Since then both decay differently, and thus

1 + zeq =
a0
aeq

=
ΩM

ΩR
= 3.1× 104 ΩMh2 , (92)

where I have usedΩRh
2 = Ω

CMB
h2 +Ωνh

2 = 3.24× 10−5 for three massless neutrinos atT = Tν . As
I will show later, the matter content of the universe today isbelow critical,ΩM ≃ 0.3, while h ≃ 0.71,
and therefore(1 + zeq) ≃ 3400, or aboutteq = 1308 (ΩMh2)−2yr ≃ 61, 000 years after the origin of
the universe. Around the time of matter-radiation equality, the rate of expansion (19) can be written as
(a0 ≡ 1)

H(a) = H0

(

ΩR a−4 +ΩM a−3
)1/2

= H0Ω
1/2
M a−3/2

(

1 +
aeq
a

)1/2
. (93)

The horizon sizeis the coordinate distance travelled by a photon since the beginning of the universe,
dH ∼ H−1, i.e. the size of causally connected regions in the universe. Thecomovinghorizon size is
then given by

dH =
c

aH(a)
= cH−1

0 Ω
−1/2
M a1/2

(

1 +
aeq
a

)−1/2
. (94)

Thus the horizon size at matter-radiation equality (a = aeq) is

dH(aeq) =
cH−1

0√
2

Ω
−1/2
M a1/2eq ≃ 12 (ΩMh)−1 h−1Mpc . (95)

This scale plays a very important role in theories of structure formation.

2.67 Recombination and photon decoupling

As the temperature of the universe decreased, electrons could eventually become bound to protons to
form neutral hydrogen. Nevertheless, there is always a non-zero probability that a rare energetic photon
ionizes hydrogen and produces a free electron. Theionization fractionof electrons in equilibrium with
the plasma at a given temperature is given by the Saha equation [15]

1−Xeq
e

Xeq
e

=
4
√
2ζ(3)√
π

η

(

T

me

)3/2

eEion/T , (96)

whereEion = 13.6 eV is the ionization energy of hydrogen, andη is the baryon-to-photon ratio (88). If
we now use Eq. (75), we can compute the ionization fractionXeq

e as a function of redshiftz. Note that



the huge number of photons with respect to electrons (in the ratio 4He : H : γ ≃ 1 : 4 : 1010) implies
that even at a very low temperature, the photon distributionwill contain a sufficiently large number of
high-energy photons to ionize a significant fraction of hydrogen. In fact,definingrecombination as the
time at whichXeq

e ≡ 0.1, one finds that the recombination temperature isTrec = 0.31 eV ≪ Eion,
for η10 ≃ 6.2. Comparing with the present temperature of the microwave background, we deduce the
corresponding redshift at recombination,(1 + zrec) ≃ 1331.

Photons remain in thermal equilibrium with the plasma of baryons and electrons through elastic
Thomson scattering, with cross section

σ
T
=

8πα2

3m2
e

= 6.65 × 10−25 cm2 = 0.665 barn , (97)

whereα = 1/137.036 is the dimensionless electromagnetic coupling constant. The mean free path of
photonsλγ in such a plasma can be estimated from the photon interactionrate,λ−1

γ ∼ Γγ = neσT
. For

temperatures above a few eV, the mean free path is much smaller that the causal horizon at that time and
photons suffer multiple scattering: the plasma is like a dense fog. Photons will decouple from the plasma
when their interaction rate cannot keep up with the expansion of the universe and the mean free path
becomes larger than the horizon size: the universe becomes transparent. We can estimate this moment
by evaluatingΓγ = H at photon decoupling. Usingne = Xe η nγ , one can compute the decoupling
temperature asTdec = 0.26 eV, and the corresponding redshift as1 + zdec ≃ 1100. Recently, WMAP
measured this redshift to be1 + zdec ≃ 1089 ± 1 [20]. This redshift defines the so calledlast scattering
surface, when photons last scattered off protons and electrons and travelled freely ever since. This
decoupling occurred when the universe was approximatelytdec = 1.5 × 105 (ΩMh2)−1/2 ≃ 380, 000
years old.

Fig. 9: The Cosmic Microwave Background Spectrum seen by theFIRAS instrument on COBE. The left panel corresponds to

the monopole spectrum,T0 = 2.725± 0.002 K, where the error bars are smaller than the line width. The right panel shows the

dipole spectrum,δT1 = 3.372 ± 0.014 mK. From Ref. [21].

2.68 The microwave background

One of the most remarkable observations ever made my mankindis the detection of the relic background
of photons from the Big Bang. This background was predicted by George Gamow and collaborators
in the 1940s, based on the consistency of primordial nucleosynthesis with the observed helium abun-
dance. They estimated a value of about 10 K, although a somewhat more detailed analysis by Alpher and
Herman in 1950 predictedTγ ≈ 5 K. Unfortunately, they had doubts whether the radiation would have
survived until the present, and this remarkable predictionslipped into obscurity, until Dicke, Peebles,



Roll and Wilkinson [22] studied the problem again in 1965. Before they could measure the photon back-
ground, they learned that Penzias and Wilson had observed a weak isotropic background signal at a radio
wavelength of 7.35 cm, corresponding to a blackbody temperature ofTγ = 3.5 ± 1 K. They published
their two papers back to back, with that of Dicke et al. explaining the fundamental significance of their
measurement [6].

Since then many different experiments have confirmed the existence of the microwave background.
The most outstanding one has been the Cosmic Background Explorer (COBE) satellite, whose FIRAS
instrument measured the photon background with great accuracy over a wide range of frequencies (ν =
1− 97 cm−1), see Ref. [21], with a spectral resolution∆ν

ν = 0.0035. Nowadays, the photon spectrum is
confirmed to be a blackbody spectrum with a temperature givenby [21]

TCMB = 2.725 ± 0.002 K (systematic, 95% c.l.) ± 7 µK (1σ statistical) (98)

In fact, this is the best blackbody spectrum ever measured, see Fig. 9, with spectral distortions below the
level of 10 parts per million (ppm).

Fig. 10: The Cosmic Microwave Background Spectrum seen by the DMR instrument on COBE. The top figure corresponds to

the monopole,T0 = 2.725 ± 0.002 K. The middle figure shows the dipole,δT1 = 3.372 ± 0.014 mK, and the lower figure

shows the quadrupole and higher multipoles,δT2 = 18 ± 2 µK. The central region corresponds to foreground by the galaxy.

From Ref. [23].

Moreover, the differential microwave radiometer (DMR) instrument on COBE, with a resolution
of about7◦ in the sky, has also confirmed that it is an extraordinarily isotropic background. The devia-
tions from isotropy, i.e. differences in the temperature ofthe blackbody spectrum measured in different
directions in the sky, are of the order of 20µK on large scales, or one part in105, see Ref. [23]. There
is, in fact, a dipole anisotropy of one part in103, δT1 = 3.372 ± 0.007 mK (95% c.l.), in the direction
of the Virgo cluster,(l, b) = (264.14◦ ± 0.30, 48.26◦ ± 0.30) (95% c.l.). Under the assumption that a
Doppler effect is responsible for the entire CMB dipole, thevelocity of the Sun with respect to the CMB



rest frame isv⊙ = 371 ± 0.5 km/s, see Ref. [21].4 When subtracted, we are left with a whole spectrum
of anisotropies in the higher multipoles (quadrupole, octupole, etc.),δT2 = 18 ± 2 µK (95% c.l.), see
Ref. [23] and Fig. 10.

Soon after COBE, other groups quickly confirmed the detection of temperature anisotropies at
around 30µK and above, at higher multipole numbers or smaller angular scales. As I shall discuss below,
these anisotropies play a crucial role in the understandingof the origin of structure in the universe.

2.69 Large-scale structure formation

Although the isotropic microwave background indicates that the universe in thepastwas extraordinarily
homogeneous, we know that the universetodayis not exactly homogeneous: we observe galaxies, clus-
ters and superclusters on large scales. These structures are expected to arise from very small primordial
inhomogeneities that grow in time via gravitational instability, and that may have originated from tiny
ripples in the metric, as matter fell into their troughs. Those ripples must have left some trace as temper-
ature anisotropies in the microwave background, and indeedsuch anisotropies were finally discovered
by the COBE satellite in 1992. The reason why they took so longto be discovered was that they appear
as perturbations in temperature of only one part in105.

While the predicted anisotropies have finally been seen in the CMB, not all kinds of matter and/or
evolution of the universe can give rise to the structure we observe today. If we define the density contrast
as [24]

δ(~x, a) ≡ ρ(~x, a)− ρ̄(a)

ρ̄(a)
=

∫

d3~k δk(a) e
i~k·~x , (99)

whereρ̄(a) = ρ0 a
−3 is the average cosmic density, we need a theory that will growa density contrast

with amplitudeδ ∼ 10−5 at the last scattering surface (z = 1100) up to density contrasts of the order of
δ ∼ 102 for galaxies at redshiftsz ≪ 1, i.e. today. This is anecessaryrequirement for any consistent
theory of structure formation [25].

Furthermore, the anisotropies observed by the COBE satellite correspond to a small-amplitude
scale-invariant primordial power spectrum of inhomogeneities

P (k) = 〈|δk|2〉 ∝ kn , with n = 1 , (100)

where the brackets〈·〉 represent integration over an ensemble of different universe realizations. These
inhomogeneities are like waves in the space-time metric. When matter fell in the troughs of those waves,
it created density perturbations that collapsed gravitationally to form galaxies and clusters of galaxies,
with a spectrum that is also scale invariant. Such a type of spectrum was proposed in the early 1970s by
Edward R. Harrison, and independently by the Russian cosmologist Yakov B. Zel’dovich, see Ref. [26],
to explain the distribution of galaxies and clusters of galaxies on very large scales in our observable
universe.

Today various telescopes – like the Hubble Space Telescope,the twin Keck telescopes in Hawaii
and the European Southern Observatory telescopes in Chile –are exploring the most distant regions of
the universe and discovering the first galaxies at large distances. The furthest galaxies observed so far are
at redshifts ofz ≃ 10 (at a distance of 13.7 billion light years from Earth), whoselight was emitted when
the universe had only about 3% of its present age. Only a few galaxies are known at those redshifts, but
there are at present various catalogs like the CfA and APM galaxy catalogs, and more recently the IRAS
Point Source redshift Catalog, see Fig. 11, and Las Campanasredshift surveys, that study the spatial
distribution of hundreds of thousands of galaxies up to distances of a billion light years, orz < 0.1,
or the 2 degree Field Galaxy Redshift Survey (2dFGRS) and theSloan Digital Sky Survey (SDSS),
which reachz < 0.5 and study millions of galaxies. These catalogs are telling us about the evolution

4COBE even determined the annual variation due to the Earth’smotion around the Sun – the ultimate proof of Copernicus’
hypothesis.



Fig. 11: The IRAS Point Source Catalog redshift survey contains some 15,000 galaxies, covering over 83% of the sky up to

redshifts ofz ≤ 0.05. We show here the projection of the galaxy distribution in galactic coordinates. From Ref. [27].

of clusters and superclusters of galaxies in the universe, and already put constraints on the theory of
structure formation. From these observations one can inferthat most galaxies formed at redshifts of the
order of2 − 6; clusters of galaxies formed at redshifts of order 1, and superclusters are forming now.
That is, cosmic structure formed from the bottom up: from galaxies to clusters to superclusters, and not
the other way around. This fundamental difference is an indication of the type of matter that gave rise to
structure.

We know from Big Bang nucleosynthesis that all the baryons inthe universe cannot account for
the observed amount of matter, so there must be some extra matter (dark since we don’t see it) to account
for its gravitational pull. Whether it is relativistic (hot) or non-relativistic (cold) could be inferred from
observations: relativistic particles tend to diffuse fromone concentration of matter to another, thus trans-
ferring energy among them and preventing the growth of structure on small scales. This is excluded by
observations, so we conclude that most of the matter responsible for structure formation must be cold.
How much there is is a matter of debate at the moment. Some recent analyses suggest that there is not
enough cold dark matter to reach the critical density required to make the universe flat. If we want to
make sense of the present observations, we must conclude that some other form of energy permeates the
universe. In order to resolve this issue, 2dFGRS and SDSS started taking data a few years ago. The first
has already been completed, but the second one is still taking data up to redshiftsz ≃ 5 for quasars, over
a large region of the sky. These important observations willhelp astronomers determine the nature of the
dark matter and test the validity of the models of structure formation.

Before COBE discovered the anisotropies of the microwave background there were serious doubts
whether gravity alone could be responsible for the formation of the structure we observe in the universe
today. It seemed that a new force was required to do the job. Fortunately, the anisotropies were found
with the right amplitude for structure to be accounted for bygravitational collapse of primordial inho-
mogeneities under the attraction of a large component of non-relativistic dark matter. Nowadays, the
standard theory of structure formation is a cold dark mattermodel with a non vanishing cosmological
constant in a spatially flat universe. Gravitational collapse amplifies the density contrast initially through
linear growth and later on via non-linear collapse. In the process, overdense regions decouple from
the Hubble expansion to become bound systems, which start attracting eachother to form larger bound
structures. In fact, the largest structures, superclusters, have not yet gone non-linear.

The primordial spectrum (100) is reprocessed by gravitational instability after the universe be-
comes matter dominated and inhomogeneities can grow. Linear perturbation theory shows that the grow-



ing mode5 of small density contrasts go like [24, 25]

δ(a) ∝ a1+3ω =

{

a2 , a < aeq
a , a > aeq

(101)

in the Einstein-de Sitter limit (ω = p/ρ = 1/3 and 0, for radiation and matter, respectively). There are
slight deviations fora ≫ aeq, if ΩM 6= 1 or ΩΛ 6= 0, but we will not be concerned with them here.
The important observation is that, since the density contrast at last scattering is of orderδ ∼ 10−5, and
the scale factor has grown since then only a factorzdec ∼ 103, one would expect a density contrast
today of orderδ0 ∼ 10−2. Instead, we observe structures like galaxies, whereδ ∼ 102. So how can
this be possible? The microwave background shows anisotropies due to fluctuations in the baryonic
matter component only (to which photons couple, electromagnetically). If there is an additional matter
component that only couples through very weak interactions, fluctuations in that component could grow
as soon as it decoupled from the plasma, well before photons decoupled from baryons. The reason why
baryonic inhomogeneities cannot grow is because of photon pressure: as baryons collapse towards denser
regions, radiation pressure eventually halts the contraction and sets up acoustic oscillations in the plasma
that prevent the growth of perturbations, until photon decoupling. On the other hand, a weakly interacting
cold dark matter component could start gravitational collapse much earlier, even before matter-radiation
equality, and thus reach the density contrast amplitudes observed today. The resolution of this mismatch
is one of the strongest arguments for the existence of a weakly interacting cold dark matter component
of the universe.

CDM
 n = 1

HDM 
n = 1 MDM 

n = 1

0.001            0.01              0.1                 1                10

k  ( h  Mpc   )-1

5

P
 (

 k
 )

  (
 h

   
 M

pc
  )

-3
 3

10

410

1000

100

10

1

0.1

TCDM 
n = .8

COBE

d  ( h    Mpc )-1 

                     1000             100              10                  1
Microwave Background Superclusters Clusters Galaxies

Fig. 12: The power spectrum for cold dark matter (CDM), tilted cold dark matter (TCDM), hot dark matter (HDM), and mixed

hot plus cold dark matter (MDM), normalized to COBE, for large-scale structure formation. From Ref. [28].

How much dark matter there is in the universe can be deduced from the actual power spectrum (the
Fourier transform of the two-point correlation function ofdensity perturbations) of the observed large
scale structure. One can decompose the density contrast in Fourier components, see Eq. (99). This is
very convenient since in linear perturbation theory individual Fourier components evolve independently.
A comoving wavenumberk is said to “enter the horizon” whenk = d−1

H (a) = aH(a). If a certain
perturbation, of wavelengthλ = k−1 < dH(aeq), enters the horizon before matter-radiation equality, the
fast radiation-driven expansion prevents dark-matter perturbations from collapsing. Since light can only
cross regions that are smaller than the horizon, the suppression of growth due to radiation is restricted
to scales smaller than the horizon, while large-scale perturbations remain unaffected. This is the reason

5The decaying modes go likeδ(t) ∼ t−1, for all ω.



why the horizon size at equality, Eq. (95), sets an importantscale for structure growth,

keq = d−1
H (aeq) ≃ 0.083 (ΩMh)h Mpc−1 . (102)

The suppression factor can be easily computed from (101) asfsup = (aenter/aeq)
2 = (keq/k)

2. In other
words, the processed power spectrumP (k) will have the form:

P (k) ∝
{

k , k ≪ keq

k−3 , k ≫ keq
(103)

This is precisely the shape that large-scale galaxy catalogs are bound to test in the near future, see Fig. 12.
Furthermore, since relativistic Hot Dark Matter (HDM) transfer energy between clumps of matter, they
will wipe out small scale perturbations, and this should be seen as a distinctive signature in the matter
power spectra of future galaxy catalogs. On the other hand, non-relativistic Cold Dark Matter (CDM)
allow structure to form onall scales via gravitational collapse. The dark matter will then pull in the
baryons, which will later shine and thus allow us to see the galaxies.

Naturally, when baryons start to collapse onto dark matter potential wells, they will convert a large
fraction of their potential energy into kinetic energy of protons and electrons, ionizing the medium. As a
consequence, we expect to see a large fraction of those baryons constituting a hot ionized gas surrounding
large clusters of galaxies. This is indeed what is observed,and confirms the general picture of structure
formation.

3. DETERMINATION OF COSMOLOGICAL PARAMETERS

In this Section, I will restrict myself to those recent measurements of the cosmological parameters by
means of standard cosmological techniques, together with afew instances of new results from recently
applied techniques. We will see that a large host of observations are determining the cosmological
parameters with some reliability of the order of 10%. However, the majority of these measurements are
dominated by large systematic errors. Most of the recent work in observational cosmology has been
the search for virtually systematic-free observables, like those obtained from the microwave background
anisotropies, and discussed in Section 4.4. I will devote, however, this Section to the more ‘classical’
measurements of the following cosmological parameters: The rate of expansionH0; the matter content
ΩM; the cosmological constantΩΛ; the spatial curvatureΩK , and the age of the universet0.

3.1 The rate of expansionH0

Over most of last century the value ofH0 has been a constant source of disagreement [29]. Around
1929, Hubble measured the rate of expansion to beH0 = 500 km s−1Mpc−1, which implied an age of
the universe of ordert0 ∼ 2 Gyr, in clear conflict with geology. Hubble’s data was based on Cepheid
standard candles that were incorrectly calibrated with those in the Large Magellanic Cloud. Later on,
in 1954 Baade recalibrated the Cepheid distance and obtained a lower value,H0 = 250 km s−1Mpc−1,
still in conflict with ratios of certain unstable isotopes. Finally, in 1958 Sandage realized that the bright-
est stars in galaxies were ionized HII regions, and the Hubble rate dropped down toH0 = 60 km s−1

Mpc−1, still with large (factor of two) systematic errors. Fortunately, in the past 15 years there has
been significant progress towards the determination ofH0, with systematic errors approaching the 10%
level. These improvements come from two directions. First,technological, through the replacement of
photographic plates (almost exclusively the source of datafrom the 1920s to 1980s) with charged couple
devices (CCDs), i.e. solid state detectors with excellent flux sensitivity per pixel, which were previously
used successfully in particle physics detectors. Second, by the refinement of existing methods for mea-
suring extragalactic distances (e.g. parallax, Cepheids,supernovae, etc.). Finally, with the development
of completely new methods to determineH0, which fall into totally independent and very broad cate-
gories: a) Gravitational lensing; b) Sunyaev-Zel’dovich effect; c) Extragalactic distance scale, mainly



Cepheid variability and type Ia Supernovae; d) Microwave background anisotropies. I will review here
the first three, and leave the last method for Section 4.4, since it involves knowledge about the primordial
spectrum of inhomogeneities.

3.11 Gravitational lensing

Imagine a quasi-stellar object (QSO) at large redshift (z ≫ 1) whose light is lensed by an intervening
galaxy at redshiftz ∼ 1 and arrives to an observer atz = 0. There will be at least two different
images of the same backgroundvariable point source. The arrival times of photons from two different
gravitationally lensed images of the quasar depend on the different path lengths and the gravitational
potential traversed. Therefore, a measurement of the time delay and the angular separation of the different
images of a variable quasar can be used to determineH0 with great accuracy. This method, proposed in
1964 by Refsdael [30], offers tremendous potential becauseit can be applied at great distances and it is
based on very solid physical principles [31].

Unfortunately, there are very few systems with both a favourable geometry (i.e. a known mass
distribution of the intervening galaxy) and a variable background source with a measurable time delay.
That is the reason why it has taken so much time since the original proposal for the first results to come
out. Fortunately, there are now very powerful telescopes that can be used for these purposes. The best
candidate to-date is the QSO0957 + 561, observed with the 10m Keck telescope, for which there is a
model of the lensing mass distribution that is consistent with the measured velocity dispersion. Assuming
a flat space withΩM = 0.25, one can determine [32]

H0 = 72 ± 7 (1σ statistical) ± 15% (systematic) km s−1Mpc−1 . (104)

The main source of systematic error is the degeneracy between the mass distribution of the lens and
the value ofH0. Knowledge of the velocity dispersion within the lens as a function of position helps
constrain the mass distribution, but those measurements are very difficult and, in the case of lensing by
a cluster of galaxies, the dark matter distribution in thosesystems is usually unknown, associated with a
complicated cluster potential. Nevertheless, the method is just starting to give promising results and, in
the near future, with the recent discovery of several systems with optimum properties, the prospects for
measuringH0 and lowering its uncertainty with this technique are excellent.

3.12 Sunyaev-Zel’dovich effect

As discussed in the previous Section, the gravitational collapse of baryons onto the potential wells gen-
erated by dark matter gave rise to the reionization of the plasma, generating an X-ray halo around rich
clusters of galaxies, see Fig. 13. The inverse-Compton scattering of microwave background photons
off the hot electrons in the X-ray gas results in a measurabledistortion of the blackbody spectrum
of the microwave background, known as the Sunyaev-Zel’dovich (SZ) effect. Since photons acquire
extra energy from the X-ray electrons, we expect a shift towards higher frequencies of the spectrum,
(∆ν/ν) ≃ (kBTgas/mec

2) ∼ 10−2. This corresponds to adecrementof the microwave background tem-
perature at low frequencies (Rayleigh-Jeans region) and anincrement at high frequencies, see Ref. [33].

Measuring thespatialdistribution of the SZ effect (3 K spectrum), together with ahigh resolution
X-ray map (108 K spectrum) of the cluster, one can determine the density andtemperature distribution
of the hot gas. Since the X-ray flux is distance-dependent (F = L/4πd2L), while the SZ decrement is
not (because the energy of the CMB photons increases as we go back in redshift,ν = ν0(1 + z), and
exactly compensates the redshift in energy of the photons that reach us), one can determine from there
the distance to the cluster, and thus the Hubble rateH0.

The advantages of this method are that it can be applied to large distances and it is based on
clear physical principles. The main systematics come from possible clumpiness of the gas (which would



Fig. 13: The Coma cluster of galaxies, seen here in an opticalimage (left) and an X-ray image (right), taken by the recently

launched Chandra X-ray Observatory. From Ref. [34].

reduceH0), projection effects (if the clusters are prolate,H0 could be larger), the assumption of hy-
drostatic equilibrium of the X-ray gas, details of models for the gas and electron densities, and possible
contaminations from point sources. Present measurements give the value [33]

H0 = 60± 10 (1σ statistical) ± 20% (systematic) km s−1Mpc−1 , (105)

compatible with other determinations. A great advantage ofthis completely new and independent method
is that nowadays more and more clusters are observed in the X-ray, and soon we will have high-resolution
2D maps of the SZ decrement from several balloon flights, as well as from future microwave background
satellites, together with precise X-ray maps and spectra from the Chandra X-ray observatory recently
launched by NASA, as well as from the European X-ray satellite XMM launched a few months ago by
ESA, which will deliver orders of magnitude better resolution than the existing Einstein X-ray satellite.

3.13 Cepheid variability

Cepheids are low-mass variable stars with a period-luminosity relation based on the helium ionization
cycles inside the star, as it contracts and expands. This time variability can be measured, and the star’s
absolute luminosity determined from the calibrated relationship. From the observed flux one can then
deduce the luminosity distance, see Eq. (28), and thus the Hubble rateH0. The Hubble Space Telescope
(HST) was launched by NASA in 1990 (and repaired in 1993) withthe specific project of calibrating the
extragalactic distance scale and thus determining the Hubble rate with 10% accuracy. The most recent
results from HST are the following [35]

H0 = 71± 4 (random) ± 7 (systematic) km s−1Mpc−1 . (106)

The main source of systematic error is the distance to the Large Magellanic Cloud, which provides the
fiducial comparison for Cepheids in more distant galaxies. Other systematic uncertainties that affect the
value ofH0 are the internal extinction correction method used, a possible metallicity dependence of the
Cepheid period-luminosity relation and cluster population incompleteness bias, for a set of 21 galaxies
within 25 Mpc, and 23 clusters withinz ∼< 0.03.

With better telescopes already taking data, like the Very Large Telescope (VLT) interferometer
of the European Southern Observatory (ESO) in the Chilean Atacama desert, with 8 synchronized tele-
scopes, and others coming up soon, like the Next Generation Space Telescope (NGST) proposed by
NASA for 2008, and the Gran TeCan of the European Northern Observatory in the Canary Islands, for
2010, it is expected that much better resolution and therefore accuracy can be obtained for the determi-
nation ofH0.



3.2 Dark Matter

In the 1920s Hubble realized that the so called nebulae were actually distant galaxies very similar to our
own. Soon afterwards, in 1933, Zwicky found dynamical evidence that there is possibly ten to a hundred
times more mass in the Coma cluster than contributed by the luminous matter in galaxies [36]. However,
it was not until the 1970s that the existence of dark matter began to be taken more seriously. At that time
there was evidence that rotation curves of galaxies did not fall off with radius and that the dynamical
mass was increasing with scale from that of individual galaxies up to clusters of galaxies. Since then,
new possible extra sources to the matter content of the universe have been accumulating:

ΩM = ΩB, lum (stars in galaxies) (107)

+ ΩB, dark (MACHOs?) (108)

+ ΩCDM (weakly interacting : axion, neutralino?) (109)

+ ΩHDM (massive neutrinos?) (110)

The empirical route to the determination ofΩM is nowadays one of the most diversified of all
cosmological parameters. The matter content of the universe can be deduced from the mass-to-light ratio
of various objects in the universe; from the rotation curvesof galaxies; from microlensing and the direct
search of Massive Compact Halo Objects (MACHOs); from the cluster velocity dispersion with the use
of the Virial theorem; from the baryon fraction in the X-ray gas of clusters; from weak gravitational
lensing; from the observed matter distribution of the universe via its power spectrum; from the cluster
abundance and its evolution; from direct detection of massive neutrinos at SuperKamiokande; from direct
detection of Weakly Interacting Massive Particles (WIMPs)at CDMS, DAMA or UKDMC, and finally
from microwave background anisotropies. I will review herejust a few of them.

3.21 Rotation curves of spiral galaxies

The flat rotation curves of spiral galaxies provide the most direct evidence for the existence of large
amounts of dark matter. Spiral galaxies consist of a centralbulge and a very thin disk, stabilized against
gravitational collapse by angular momentum conservation,and surrounded by an approximately spher-
ical halo of dark matter. One can measure the orbital velocities of objects orbiting around the disk as a
function of radius from the Doppler shifts of their spectrallines.

The rotation curve of the Andromeda galaxy was first measuredby Babcock in 1938, from the
stars in the disk. Later it became possible to measure galactic rotation curves far out into the disk, and
a trend was found [37]. The orbital velocity rose linearly from the center outward until it reached a
typical value of 200 km/s, and then remained flat out to the largest measured radii. This was completely
unexpected since the observed surface luminosity of the disk falls off exponentially with radius [37],
I(r) = I0 exp(−r/rD). Therefore, one would expect that most of the galactic mass is concentrated
within a few disk lengthsrD, such that the rotation velocity is determined as in a Keplerian orbit,vrot =
(GM/r)1/2 ∝ r−1/2. No such behaviour is observed. In fact, the most convincingobservations come
from radio emission (from the 21 cm line) of neutral hydrogenin the disk, which has been measured to
much larger galactic radii than optical tracers. A typical case is that of the spiral galaxy NGC 6503, where
rD = 1.73 kpc, while the furthest measured hydrogen line is atr = 22.22 kpc, about 13 disk lengths
away. Nowadays, thousands of galactic rotation curves are known, see Fig. 14, and all suggest the
existence of about ten times more mass in the halos of spiral galaxies than in the stars of the disk. Recent
numerical simulations of galaxy formation in a CDM cosmology [38] suggest that galaxies probably
formed by the infall of material in an overdense region of theuniverse that had decoupled from the
overall expansion.

The dark matter is supposed to undergo violent relaxation and create a virialized system, i.e.
in hydrostatic equilibrium. This picture has led to a simplemodel of dark-matter halos as isothermal
spheres, with density profileρ(r) = ρc/(r

2
c + r2), whererc is a core radius andρc = v2∞/4πG, with



Fig. 14: The rotation curves of several hundred galaxies. Upper panel: As a function of their radii in kpc. Middle panel: The

central 5 kpc. Lower panel: As a function of scale radius.

v∞ equal to the plateau value of the flat rotation curve. This model is consistent with the universal
rotation curves seen in Fig. 6. At large radii the dark matterdistribution leads to a flat rotation curve.
The question is for how long. In dense galaxy clusters one expects the galactic halos to overlap and
form a continuum, and therefore the rotation curves should remain flat from one galaxy to another.
However, in field galaxies, far from clusters, one can study the rotation velocities of substructures (like
satellite dwarf galaxies) around a given galaxy, and determine whether they fall off at sufficiently large
distances according to Kepler’s law, as one would expect, once the edges of the dark matter halo have
been reached. These observations are rather difficult because of uncertainties in distinguishing between
true satellites and interlopers. Recently, a group from theSloan Digital Sky Survey Collaboration claim
that they have seen the edges of the dark matter halos around field galaxies by confirming the fall-off
at large distances of their rotation curves [39]. These results, if corroborated by further analysis, would
constitute a tremendous support to the idea of dark matter asa fluid surrounding galaxies and clusters,
while at the same time eliminates the need for modifications of Newtonian of even Einstenian gravity at
the scales of galaxies, to account for the flat rotation curves.

That’s fine, but how much dark matter is there at the galactic scale? Adding up all the matter in
galactic halos up to a maximum radii, one finds

Ωhalo ≃ 10 Ωlum ≥ 0.03 − 0.05 . (111)

Of course, it would be extraordinary if we could confirm, through direct detection, the existence of dark
matter in our own galaxy. For that purpose, one should measure its rotation curve, which is much more



difficult because of obscuration by dust in the disk, as well as problems with the determination of reliable
galactocentric distances for the tracers. Nevertheless, the rotation curve of the Milky Way has been
measured and conforms to the usual picture, with a plateau value of the rotation velocity of 220 km/s.
For dark matter searches, the crucial quantity is the dark matter density in the solar neighbourhood, which
turns out to be (within a factor of two uncertainty dependingon the halo model)ρDM = 0.3 GeV/cm3.
We will come back to direct searched of dark matter in a later subsection.

3.22 Baryon fraction in clusters

Since large clusters of galaxies form through gravitational collapse, they scoop up mass over a large
volume of space, and therefore the ratio of baryons over the total matter in the cluster should be rep-
resentative of the entire universe, at least within a 20% systematic error. Since the 1960s, when X-ray
telescopes became available, it is known that galaxy clusters are the most powerful X-ray sources in the
sky [40]. The emission extends over the whole cluster and reveals the existence of a hot plasma with
temperatureT ∼ 107 − 108 K, where X-rays are produced by electron bremsstrahlung. Assuming the
gas to be in hydrostatic equilibrium and applying the virialtheorem one can estimate the total mass in
the cluster, giving general agreement (within a factor of 2)with the virial mass estimates. From these
estimates one can calculate the baryon fraction of clusters

fBh
3/2 = 0.08 ⇒ ΩB

ΩM
≈ 0.14 , for h = 0.70 . (112)

SinceΩlum ≃ 0.002 − 0.006, the previous expression suggests that clusters contain far more baryonic
matter in the form of hot gas than in the form of stars in galaxies. Assuming this fraction to be repre-
sentative of the entire universe, and using the Big Bang nucleosynthesis value ofΩB = 0.04± 0.01, for
h = 0.7, we find

ΩM = 0.3± 0.1 (statistical) ± 20% (systematic) . (113)

This value is consistent with previous determinations ofΩM . If some baryons are ejected from the cluster
during gravitational collapse, or some are actually bound in nonluminous objects like planets, then the
actual value ofΩM is smaller than this estimate.

3.23 Weak gravitational lensing

Since the mid 1980s, deep surveys with powerful telescopes have observed huge arc-like features in
galaxy clusters. The spectroscopic analysis showed that the cluster and the giant arcs were at very differ-
ent redshifts. The usual interpretation is that the arc is the image of a distant background galaxy which
is in the same line of sight as the cluster so that it appears distorted and magnified by the gravitational
lens effect: the giant arcs are essentially partial Einstein rings. From a systematic study of the clus-
ter mass distribution one can reconstruct the shear field responsible for the gravitational distortion [41].
This analysis shows that there are large amounts of dark matter in the clusters, in rough agreement with
the virial mass estimates, although the lensing masses tendto be systematically larger. At present, the
estimates indicateΩM = 0.2 − 0.3 on scales∼< 6h−1 Mpc.

3.24 Large scale structure formation and the matter power spectrum

Although the isotropic microwave background indicates that the universe in thepastwas extraordinarily
homogeneous, we know that the universetodayis far from homogeneous: we observe galaxies, clusters
and superclusters on large scales. These structures are expected to arise from very small primordial inho-
mogeneities that grow in time via gravitational instability, and that may have originated from tiny ripples
in the metric, as matter fell into their troughs. Those ripples must have left some trace as temperature
anisotropies in the microwave background, and indeed such anisotropies were finally discovered by the



Fig. 15: The 2 degree Field Galaxy Redshift Survey contains some 250,000 galaxies, covering a large fraction of the sky upto

redshifts ofz ≤ 0.25. From Ref. [42].

COBE satellite in 1992. However, not all kinds of matter and/or evolution of the universe can give rise
to the structure we observe today. If we define the density contrast as

δ(~x, a) ≡ ρ(~x, a)− ρ̄(a)

ρ̄(a)
=

∫

d3~k δk(a) e
i~k·~x , (114)

whereρ̄(a) = ρ0 a
−3 is the average cosmic density, we need a theory that will growa density contrast

with amplitudeδ ∼ 10−5 at the last scattering surface (z = 1100) up to density contrasts of the order of
δ ∼ 102 for galaxies at redshiftsz ≪ 1, i.e. today. This is anecessaryrequirement for any consistent
theory of structure formation.

Furthermore, the anisotropies observed by the COBE satellite correspond to a small-amplitude
scale-invariant primordial power spectrum of inhomogeneities

P (k) = 〈|δk|2〉 ∝ kn , with n = 1 , (115)

These inhomogeneities are like waves in the space-time metric. When matter fell in the troughs of those
waves, it created density perturbations that collapsed gravitationally to form galaxies and clusters of
galaxies, with a spectrum that is also scale invariant. Sucha type of spectrum was proposed in the early
1970s by Edward R. Harrison, and independently by the Russian cosmologist Yakov B. Zel’dovich [26],
to explain the distribution of galaxies and clusters of galaxies on very large scales in our observable
universe, see Fig. 15.

Since the primordial spectrum is very approximately represented by a scale-invariantGaussian
random field, the best way to present the results of structure formation is by working with the 2-point
correlation function in Fourier space, the so-calledpower spectrum. If the reprocessed spectrum of in-
homogeneities remains Gaussian, the power spectrum is all we need to describe the galaxy distribution.
Non-Gaussian effects are expected to arise from the non-linear gravitational collapse of structure, and
may be important at small scales. The power spectrum measures the degree of inhomogeneity in the
mass distribution on different scales, see Fig. 16. It depends upon a few basic ingredientes: a) the pri-
mordial spectrum of inhomogeneities, whether they are Gaussian or non-Gaussian, whetheradiabatic
(perturbations in the energy density) orisocurvature(perturbations in the entropy density), whether the
primordial spectrum hastilt (deviations from scale-invariance), etc.; b) the recent creation of inhomo-
geneities, whethercosmic stringsor some other topological defect from an early phase transition are
responsible for the formation of structure today; and c) thecosmic evolution of the inhomogeneity,



Fig. 16: The measured power spectrumP (k) as a function of wavenumberk. From observations of the Sloan Digital Sky

Survey, CMB anisotropies, cluster abundance, gravitational lensing and Lyman-α forest. From Ref. [43].

whether the universe has been dominated by cold or hot dark matter or by a cosmological constant since
the beginning of structure formation, and also depending onthe rate of expansion of the universe.

The working tools used for the comparison between the observed power spectrum and the pre-
dicted one are very precise N-body numerical simulations and theoretical models that predict theshape
but not theamplitudeof the present power spectrum. Even though a large amount of work has gone
into those analyses, we still have large uncertainties about the nature and amount of matter necessary for
structure formation. A model that has become a working paradigm is a flat cold dark matter model with
a cosmological constant andΩM ∼ 0.3. This model is now been confronted with the recent very precise
measurements from 2dFGRS [42] and SDSS [43].

3.25 The new redshift catalogs, 2dF and Sloan Digital Sky Survey

Our view of the large-scale distribution of luminous objects in the universe has changed dramatically
during the last 25 years: from the simple pre-1975 picture ofa distribution of field and cluster galax-
ies, to the discovery of the first single superstructures andvoids, to the most recent results showing an
almost regular web-like network of interconnected clusters, filaments and walls, separating huge nearly
empty volumes. The increased efficiency of redshift surveys, made possible by the development of spec-
trographs and – specially in the last decade – by an enormous increase in multiplexing gain (i.e. the
ability to collect spectra of several galaxies at once, thanks to fibre-optic spectrographs), has allowed
us not only to docartographyof the nearby universe, but also to statistically characterize some of its
properties. At the same time, advances in theoretical modeling of the development of structure, with
large high-resolution gravitational simulations coupledto a deeper yet limited understanding of how to
form galaxies within the dark matter halos, have provided a more realistic connection of the models to
the observable quantities. Despite the large uncertainties that still exist, this has transformed the study of



Fig. 17: The observed cosmic matter components as functionsof the Hubble expansion parameter. The luminous matter

component is given by0.002 ≤ Ωlum ≤ 0.006; the galactic halo component is the horizontal band,0.03 ≤ Ωhalo ≤ 0.05,

crossing the baryonic component from BBN,ΩB h2 = 0.0244± 0.0024; and the dynamical mass component from large scale

structure analysis is given byΩM = 0.3 ± 0.1. Note that in the rangeH0 = 70 ± 7 km/s/Mpc, there arethreedark matter

problems, see the text. From Ref. [44].

cosmology and large-scale structure into a truly quantitative science, where theory and observations can
progress together.

3.26 Summary of the matter content

We can summarize the present situation with Fig. 17, forΩM as a function ofH0. There are four bands,
the luminous matterΩlum; the baryon contentΩB, from BBN; the galactic halo componentΩhalo, and
the dynamical mass from clusters,ΩM . From this figure it is clear that there are in factthreedark matter
problems: The first one is where are 90% of the baryons? Between the fraction predicted by BBN and
that seen in stars and diffuse gas there is a huge fraction which is in the form of dark baryons. They could
be in small clumps of hydrogen that have not started thermonuclear reactions and perhaps constitute the
dark matter of spiral galaxies’ halos. Note that althoughΩB andΩhalo coincide atH0 ≃ 70 km/s/Mpc,
this could be just a coincidence. The second problem is what constitutes 90% of matter, from BBN
baryons to the mass inferred from cluster dynamics? This is the standard dark matter problem and could
be solved in the future by direct detection of a weakly interacting massive particle in the laboratory. And
finally, since we know from observations of the CMB that the universe is flat, the rest, up toΩ0 = 1,
must be a diffuse vacuum energy, which affects the very largescales and late times, and seems to be
responsible for the present acceleration of the universe, see Section 3. Nowadays, multiple observations
seem to converge towards a common determination ofΩM = 0.25± 0.08 (95% c.l.), see Fig. 18.

3.27 Massive neutrinos

One of the ‘usual suspects’ when addressing the problem of dark matter are neutrinos. They are the only
candidates known to exist. If neutrinos have a mass, could they constitute the missing matter? We know
from the Big Bang theory, see Section 2.6.5, that there is a cosmic neutrino background at a temperature
of approximately 2K. This allows one to compute the present number density in the form of neutrinos,
which turns out to be, for massless neutrinos,nν(Tν) =

3
11 nγ(Tγ) = 112 cm−3, per species of neutrino.
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falls well within a narrow range,ΩM = 0.25 ± 0.07 (95% c.l.) and is essentially independent on scale, from 100kpc to 5000

Mpc. Adapted from Ref. [45].

If neutrinos have mass, as recent experiments seem to suggest,6 see Fig. 19, the cosmic energy density
in massive neutrinos would beρν =

∑

nνmν = 3
11 nγ

∑

mν , and therefore its contribution today,

Ωνh
2 =

∑

mν

93.2 eV
. (116)

The discussion in the previous Sections suggest thatΩM ≤ 0.4, and thus, for any of the three families
of neutrinos,mν ≤ 40 eV. Note that this limit improves by six orders of magnitude the present bound
on the tau-neutrino mass [19]. Supposing that the missing mass in non-baryonic cold dark matter arises
from a single particle dark matter (PDM) component, its contribution to the critical density is bounded
by 0.05 ≤ ΩPDMh2 ≤ 0.4, see Fig. 17.

I will now go through the various logical arguments that exclude neutrinos as thedominantcompo-
nent of the missing dark matter in the universe. Is it possible that neutrinos with a mass4 eV ≤ mν ≤ 40
eV be the non-baryonic PDM component? For instance, could massive neutrinos constitute the dark
matter halos of galaxies? For neutrinos to be gravitationally bound to galaxies it is necessary that their
velocity be less that the escape velocityvesc, and thus their maximum momentum ispmax = mν vesc.
How many neutrinos can be packed in the halo of a galaxy? Due tothe Pauli exclusion principle,
the maximum number density is given by that of a completely degenerate Fermi gas with momen-
tum pF = pmax, i.e. nmax = p3max/3π

2. Therefore, the maximum local density in dark matter
neutrinos isρmax = nmaxmν = m4

ν v
3
esc/3π

2, which must be greater than the typical halo density
ρhalo = 0.3 GeV cm−3. For a typical spiral galaxy, this constraint, known as the Tremaine-Gunn limit,
givesmν ≥ 40 eV, see Ref. [47]. However, this mass, even for a single species, say the tau-neutrino,
gives a value forΩνh

2 = 0.5, which is far too high for structure formation. Neutrinos ofsuch a low
mass would constitute a relativistic hot dark matter component, which would wash-out structure below
the supercluster scale, against evidence from present observations, see Fig. 19. Furthermore, apply-

6For a review on Neutrino properties, see González-Garcı́a’s lectures on these Proceedings.



Fig. 19: The neutrino parameter space, mixing angle against∆m2, including the results from the different solar and atmospheric

neutrino oscillation experiments. Note the threshold of cosmologically important masses, cosmologically detectable neutrinos

(by CMB and LSS observations), and cosmologically excludedrange of masses. Adapted from Refs. [46] and [91].

ing the same phase-space argument to the neutrinos as dark matter in the halo of dwarf galaxies gives
mν ≥ 100 eV, beyond closure density (116). We must conclude that the simple idea that light neutrinos
could constitute the particle dark matter on all scales is ruled out. They could, however, still play a role
as a sub-dominant hot dark matter component in a flat CDM model. In that case, a neutrino mass of order
1 eV is not cosmological excluded, see Fig. 19.

Another possibility is that neutrinos have a large mass, of order a few GeV. In that case, their num-
ber density at decoupling, see Section 2.5.1, is suppressedby a Boltzmann factor,∼ exp(−mν/Tdec).
For massesmν > Tdec ≃ 0.8 MeV, the present energy density has to be computed as a solution
of the corresponding Boltzmann equation. Apart from a logarithmic correction, one findsΩνh

2 ≃
0.1(10 GeV/mν)

2 for Majorana neutrinos and slightly smaller for Dirac neutrinos. In either case, neu-
trinos could be the dark matter only if their mass was a few GeV. Laboratory limits forντ of around 18
MeV [19], and much more stringent ones forνµ andνe, exclude the known light neutrinos. However,
there is always the possibility of a fourth unknown heavy andstable (perhaps sterile) neutrino. If it
couples to the Z boson and has a mass below 45 GeV for Dirac neutrinos (39.5 GeV for Majorana neu-
trinos), then it is ruled out by measurements at LEP of the invisible width of the Z. There are two logical
alternatives, either it is a sterile neutrino (it does not couple to the Z), or it does couple but has a larger
mass. In the case of a Majorana neutrino (its own antiparticle), their abundance, for this mass range,
is too small for being cosmologically relevant,Ωνh

2 ≤ 0.005. If it were a Dirac neutrino there could
be a lepton asymmetry, which may provide a higher abundance (similar to the case of baryogenesis).
However, neutrinos scatter on nucleons via the weak axial-vector current (spin-dependent) interaction.
For the small momentum transfers imparted by galactic WIMPs, such collisions are essentially coherent
over an entire nucleus, leading to an enhancement of the effective cross section. The relatively large
detection rate in this case allowes one to exclude fourth-generation Dirac neutrinos for the galactic dark
matter [48]. Anyway, it would be very implausible to have such a massive neutrino today, since it would
have to be stable, with a life-time greater than the age of theuniverse, and there is no theoretical reason



to expect a massive sterile neutrino that does not oscillateinto the other neutrinos.

Of course, the definitive test to the possible contribution of neutrinos to the overall density of
the universe would be to measuredirectly their mass in laboratory experiments. There are at present
two types of experiments: neutrino oscillation experiments, which measure onlydifferencesin squared
masses, and direct mass-searches experiments, like the tritium β-spectrum and the neutrinoless double-β
decay experiments, which measure directly the mass of the electron neutrino. The former experiments
give a boundmνe ∼< 2.3 eV (95% c.l.) [49], while the latter claim [50] they have apositive evidence
for a Majorana neutrino of massmν = 0.05 − 0.89 eV (95% c.l.), although this result still awaits
confirmation by other experiments. Neutrinos with such a mass could very well constitute the HDM
component of the universe,ΩHDM ∼< 0.15. The oscillation experiments give a range of possibilities
for ∆m2

ν = 0.3 − 3 eV2 from LSND (not yet confirmed by Miniboone), to the atmospheric neutrino
oscillations from SuperKamiokande (∆m2

ν ≃ 2.2 ± 0.5 × 10−3 eV2 , tan2 θ = 1.0 ± 0.3) and the
solar neutrino oscillations from KamLAND and the Sudbury Neutrino Observatory (∆m2

ν ≃ 8.2 ±
0.3 × 10−5 eV2 , tan2 θ = 0.39 ± 0.05), see Ref. [46]. Only the first two possibilities would be
cosmologically relevant, see Fig. 19. Thanks to recent observations by WMAP, 2dFGRS and SDSS, we
can put stringent limits on the absolute scale of neutrino masses, see below (Section 3.4).

3.28 Weakly Interacting Massive Particles

Unless we drastically change the theory of gravity on large scales, baryons cannot make up the bulk
of the dark matter. Massive neutrinos are the only alternative among the known particles, but they are
essentially ruled out as a universal dark matter candidate,even if they may play a subdominant role as
a hot dark matter component. There remains the mystery of what is the physical nature of the dominant
cold dark matter component. Something like a heavy stable neutrino, a generic Weakly Interacting
Massive Particle (WIMP), could be a reasonable candidate because its present abundance could fall
within the expected range,

ΩPDMh2 ∼ G3/2T 3
0 h

2

H2
0 〈σannvrel〉

=
3× 10−27 cm3s−1

〈σannvrel〉
. (117)

Herevrel is the relative velocity of the two incoming dark matter particles and the brackets〈·〉 denote a
thermal average at the freeze-out temperature,Tf ≃ mPDM/20, when the dark matter particles go out
of equilibrium with radiation. The value of〈σannvrel〉 needed forΩPDM ≈ 1 is remarkably close to
what one would expect for a WIMP with a massmPDM = 100 GeV, 〈σannvrel〉 ∼ α2/8πmPDM ∼
3 × 10−27 cm3s−1. We still do not know whether this is just a coincidence or an important hint on the
nature of dark matter.

There are a few theoretical candidates for WIMPs, like the neutralino, coming from supersymme-
tric extensions of the standard model of particle physics,7 but at present there is no empirical evidence that
such extensions are indeed realized in nature. In fact, the non-observation of supersymmetric particles
at current accelerators places stringent limits on the neutralino mass and interaction cross section [52].
If WIMPs constitute the dominant component of the halo of ourgalaxy, it is expected that some may
cross the Earth at a reasonable rate to be detected. The direct experimental search for them rely on
elastic WIMP collisions with the nuclei of a suitable target. Dark matter WIMPs move at a typical
galactic “virial” velocity of around200 − 300 km/s, depending on the model. If their mass is in the
range10 − 100 GeV, the recoil energy of the nuclei in the elastic collisionwould be of order 10 keV.
Therefore, one should be able to identify such energy depositions in a macroscopic sample of the target.
There are at present three different methods: First, one could search for scintillation light in NaI crystals
or in liquid xenon; second, search for an ionization signal in a semiconductor, typically a very pure
germanium crystal; and third, use a cryogenic detector at 10mK and search for a measurable temperature

7For a review of Supersymmetry (SUSY), see Kazakov’s contribution to these Proceedings.
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Fig. 20: The annual-modulation signal accumulated over 7 years is consistent with a neutralino of mass ofmχ = 59 +17
−14 GeV

and a proton cross section ofξσp = 7.0 +0.4
−1.2 × 10−6 pb, according to DAMA. From Ref. [51].

increase of the sample. The main problem with such a type of experiment is the low expected signal rate,
with a typical number below 1 event/kg/day. To reduce natural radioactive contamination one must
use extremely pure substances, and to reduce the backgroundcaused by cosmic rays requires that these
experiments be located deeply underground.

The best limits on WIMP scattering cross sections come from some germanium experiments, like
the Criogenic Dark Matter Search (CDMS) collaboration at Stanford and the Soudan mine [53], as well
as from the NaI scintillation detectors of the UK dark mattercollaboration (UKDMC) in the Boulby salt
mine in England [54], and the DAMA experiment in the Gran Sasso laboratory in Italy [51]. Current
experiments already touch the parameter space expected from supersymmetric particles, see Fig. 21,
and therefore there is a chance that they actually discover the nature of the missing dark matter. The
problem, of course, is to attribute a tentative signal unambiguously to galactic WIMPs rather than to
some unidentified radioactive background.

One specific signature is the annual modulation which arisesas the Earth moves around the Sun.8

Therefore, the net speed of the Earth relative to the galactic dark matter halo varies, causing a modulation
of the expected counting rate. The DAMA/NaI experiment has actually reported such a modulation
signal, from the combined analysis of their 7-year data, seeFig. 20 and Ref. [51], which provides a
confidence level of 99.6% for a neutralino mass ofmχ = 52 +10

−8 GeV and a proton cross section of
ξσp = 7.2 +0.4

−0.9 × 10−6 pb, whereξ = ρχ/0.3 GeV cm−3 is the local neutralino energy density in
units of the galactic halo density. There has been no confirmation yet of this result from other dark
matter search groups. In fact, the CDMS collaboration claims an exclusion of the DAMA region at
the 3 sigma level, see Fig. 21. Hopefully in the near future wewill have much better sensitivity at
low masses from the Cryogenic Rare Event Search with Superconducting Thermometers (CRESST)
experiment at Gran Sasso. The CRESST experiment [55] uses sapphire crystals as targets and a new
method to simultaneously measure the phonons and the scintillating light from particle interactions inside

8The time scale of the Sun’s orbit around the center of the galaxy is too large to be relevant in the analysis.
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Fig. 21: Exclusion range for the spin-independent WIMP scattering cross section per nucleon from the NaI experiments and

the Ge detectors. The blue lines come from the CDMS experiment, which exclude the DAMA region at more than 3 sigma.

Also shown in yellow and red is the range of expected countingrates for neutralinos in the MSSM. From Ref. [53].

the crystal, which allows excellent background discrimination. Very recently there has been also the
proposal of a completely new method based on a Superheated Droplet Detector (SDD), which claims to
have already a similar sensitivity as the more standard methods described above, see Ref. [56].

There exist otherindirect methods to search for galactic WIMPs [57]. Such particles could self-
annihilate at a certain rate in the galactic halo, producinga potentially detectable background of high
energy photons or antiprotons. The absence of such a background in both gamma ray satellites and
the Alpha Matter Spectrometer [58] imposes bounds on their density in the halo. Alternatively, WIMPs
traversing the solar system may interact with the matter that makes up the Earth or the Sun so that a small
fraction of them will lose energy and be trapped in their cores, building up over the age of the universe.
Their annihilation in the core would thus produce high energy neutrinos from the center of the Earth or
from the Sun which are detectable by neutrino telescopes. Infact, SuperKamiokande already covers a
large part of SUSY parameter space. In other words, neutrinotelescopes are already competitive with
direct search experiments. In particular, the AMANDA experiment at the South Pole [59], which has
approximately103 Cherenkov detectors several km deep in very clear ice, over avolume∼ 1 km3, is
competitive with the best direct searches proposed. The advantages of AMANDA are also directional,
since the arrays of Cherenkov detectors will allow one to reconstruct the neutrino trajectory and thus its
source, whether it comes from the Earth or the Sun. AMANDA recently reported the detection of TeV
neutrinos [59].

3.3 The age of the universet0
The universe must be older than the oldest objects it contains. Those are believed to be the stars in the
oldest clusters in the Milky Way, globular clusters. The most reliable ages come from the application
of theoretical models of stellar evolution to observationsof old stars in globular clusters. For about 30
years, the ages of globular clusters have remained reasonable stable, at about 15 Gyr [60]. However,
recently these ages have been revised downward [61].

During the 1980s and 1990s, the globular cluster age estimates have improved as both new obser-



vations have been made with CCDs, and since refinements to stellar evolution models, including opaci-
ties, consideration of mixing, and different chemical abundances have been incorporated [62]. From the
theory side, uncertainties in globular cluster ages come from uncertainties in convection models, opac-
ities, and nuclear reaction rates. From the observational side, uncertainties arise due to corrections for
dust and chemical composition. However, the dominant source of systematic errors in the globular clus-
ter age is the uncertainty in the cluster distances. Fortunately, the Hipparcos satellite recently provided
geometric parallax measurements for many nearby old stars with low metallicity, typical of glubular clus-
ters, thus allowing for a new calibration of the ages of starsin globular clusters, leading to a downward
revision to10 − 13 Gyr [62]. Moreover, there were very few stars in the Hipparcos catalog with both
small parallax erros and low metal abundance. Hence, an increase in the sample size could be critical in
reducing the statatistical uncertaintites for the calibration of the globular cluster ages. There are already
proposed two new parallax satellites, NASA’s Space Interferometry Mission (SIM) and ESA’s mission,
called GAIA, that will give 2 or 3 orders of magnitude more accurate parallaxes than Hipparcos, down
to fainter magnitude limits, for several orders of magnitude more stars. Until larger samples are avail-
able, however, distance errors are likely to be the largest source of systematic uncertainty to the globular
cluster age [29].

Fig. 22: The recent estimates of the age of the universe and that of the oldest objects in our galaxy. The last three points

correspond to the combined analysis of 8 different measurements, forh = 0.64, 0.68 and 7.2, which indicates a relatively weak

dependence onh. The age of the Sun is accurately known and is included for reference. Error bars indicate 1σ limits. The

averages of the ages of the Galactic Halo and Disk are shaded in gray. Note that there isn’t a single age estimate more than

2σ away from the average. The resultt0 > tgal is logically inevitable, but the standard EdS model does notsatisfy this unless

h < 0.55. From Ref. [63].

The supernovae groups can also determine the age of the universe from their high redshift observa-
tions. The high confidence regions in the(ΩM,ΩΛ) plane are almost parallel to the contours of constant
age. For any value of the Hubble constant less thanH0 = 70 km/s/Mpc, the implied age of the universe
is greater than 13 Gyr, allowing enough time for the oldest stars in globular clusters to evolve [62]. In-
tegrating overΩM andΩΛ, the best fit value of the age in Hubble-time units isH0t0 = 0.93 ± 0.06 or
equivalentlyt0 = 14.1± 1.0 (0.65h−1) Gyr, see Ref. [7]. Furthermore, a combination of 8 independent
recent measurements: CMB anisotropies, type Ia SNe, cluster mass-to-light ratios, cluster abundance
evolution, cluster baryon fraction, deuterium-to-hidrogen ratios in quasar spectra, double-lobed radio
sources and the Hubble constant, can be used to determine thepresent age of the universe [63]. The



result is shown in Fig. 22, compared to other recent determinations. The best fit value for the age of the
universe is, according to this analysis,t0 = 13.4 ± 1.6 Gyr, about a billion years younger than other
recent estimates [63].

Fig. 23: The anisotropies of the microwave background measured by the WMAP satellite with 10 arcminute resolution. It

shows the intrinsic CMB anisotropies at the level of a few parts in105. The galactic foreground has been properly subtracted.

The amount of information contained in this map is enough to determine most of the cosmological parameters to few percent

accuracy. From Ref. [20].

3.4 Cosmic Microwave Background Anisotropies

The cosmic microwave background has become in the last five years the Holy Grail of Cosmology, since
precise observations of the temperature and polarization anisotropies allow in principle to determine the
parameters of the Standard Model of Cosmology with very highaccuracy. Recently, the WMAP satellite
has provided with a very detailed map of the microwave anisotropies in the sky, see Fig. 23, and indeed
has fulfilled our expectations, see Table 2.

The physics of the CMB anisotropies is relatively simple [64]. The universe just before re-
combination is a very tightly coupled fluid, due to the large electromagnetic Thomson cross section
σT = 8πα2/3m2

e ≃ 0.7 barn. Photons scatter off charged particles (protons and electrons), and carry
energy, so they feel the gravitational potential associated with the perturbations imprinted in the metric
during inflation. An overdensity of baryons (protons and neutrons) does not collapse under the effect of
gravity until it enters the causal Hubble radius. The perturbation continues to grow until radiation pres-
sure opposes gravity and sets up acoustic oscillations in the plasma, very similar to sound waves. Since
overdensities of the same size will enter the Hubble radius at the same time, they will oscillate in phase.
Moreover, since photons scatter off these baryons, the acoustic oscillations occur also in the photon field
and induces a pattern of peaks in the temperature anisotropies in the sky, at different angular scales, see
Fig. 24. There are three different effects that determine the temperature anisotropies we observe in the
CMB. First,gravity: photons fall in and escape off gravitational potential wells, characterized byΦ in the
comoving gauge, and as a consequence their frequency is gravitationally blue- or red-shifted,δν/ν = Φ.
If the gravitational potential is not constant, the photonswill escape from a larger or smaller potential
well than they fell in, so their frequency is also blue- or red-shifted, a phenomenon known as the Rees-
Sciama effect. Second,pressure: photons scatter off baryons which fall into gravitationalpotential wells
and the two competing forces create acoustic waves of compression and rarefaction. Finally,velocity:
baryons accelerate as they fall into potential wells. They have minimum velocity at maximum compres-
sion and rarefaction. That is, their velocity wave is exactly 90◦ off-phase with the acoustic waves. These
waves induce a Doppler effect on the frequency of the photons. The temperature anisotropy induced by



Fig. 24: The Angular Power Spectrum of CMB temperature anisotropies, compared with the cross-correlation of temperature-

polarization anisotropies. From Ref. [20].

these three effects is therefore given by [64]

δT

T
(r) = Φ(r, tdec) + 2

∫ t0

tdec

Φ̇(r, t)dt +
1

3

δρ

ρ
− r · v

c
. (118)

Metric perturbations of different wavelengths enter the horizon at different times. The largest wave-
lengths, of size comparable to our present horizon, are entering now. There are perturbations with wave-
lengths comparable to the size of the horizon at the time of last scattering, of projected size about1◦

in the sky today, which entered precisely at decoupling. Andthere are perturbations with wavelengths
much smaller than the size of the horizon at last scattering,that entered much earlier than decoupling, all
the way to the time of radiation-matter equality, which havegone through several acoustic oscillations
before last scattering. All these perturbations of different wavelengths leave their imprint in the CMB
anisotropies.

The baryons at the time of decoupling do not feel the gravitational attraction of perturbations with
wavelength greater than the size of the horizon at last scattering, because of causality. Perturbations with
exactly that wavelength are undergoing their first contraction, or acoustic compression, at decoupling.
Those perturbations induce a large peak in the temperature anisotropies power spectrum, see Fig. 24.
Perturbations with wavelengths smaller than these will have gone, after they entered the Hubble scale,
through a series of acoustic compressions and rarefactions, which can be seen as secondary peaks in
the power spectrum. Since the surface of last scattering is not a sharp discontinuity, but a region of
∆z ∼ 100, there will be scales for which photons, travelling from oneenergy concentration to another,
will erase the perturbation on that scale, similarly to whatneutrinos or HDM do for structure on small
scales. That is the reason why we don’t see all the acoustic oscillations with the same amplitude, but in
fact they decay exponentialy towards smaller angular scales, an effect known as Silk damping, due to
photon diffusion [65, 64].



Table 2: The parameters of the standard cosmological model. The standard model of cosmology has about 20 different

parameters, needed to describe the background space-time,the matter content and the spectrum of metric perturbations. We

include here the present range of the most relevant parameters (with 1σ errors), as recently determined by WMAP, and the error

with which the Planck satellite will be able to determine them in the near future. The rate of expansion is written in unitsof

H = 100 h km/s/Mpc.

physical quantity symbol WMAP Planck

total density Ω0 1.02 ± 0.02 0.7%
baryonic matter ΩB 0.044 ± 0.004 0.6%
cosmological constant ΩΛ 0.73 ± 0.04 0.5%
cold dark matter ΩM 0.23 ± 0.04 0.6%
hot dark matter Ωνh

2 < 0.0076 (95% c.l.) 1%
sum of neutrino masses

∑

mν (eV) < 0.23 (95% c.l.) 1%
CMB temperature T0 (K) 2.725 ± 0.002 0.1%
baryon to photon ratio η × 1010 6.1± 0.3 0.5%
baryon to matter ratio ΩB/ΩM 0.17 ± 0.01 1%
spatial curvature ΩK < 0.02 (95% c.l.) 0.5%
rate of expansion h 0.71 ± 0.03 0.8%
age of the universe t0 (Gyr) 13.7 ± 0.2 0.1%
age at decoupling tdec (kyr) 379 ± 8 0.5%
age at reionization tr (Myr) 180 ± 100 5%
spectral amplitude A 0.833 ± 0.085 0.1%
spectral tilt ns 0.98 ± 0.03 0.2%
spectral tilt variation dns/d ln k −0.031 ± 0.017 0.5%
tensor-scalar ratio r < 0.71 (95% c.l.) 5%
reionization optical depth τ 0.17 ± 0.04 5%
redshift of equality zeq 3233 ± 200 5%
redshift of decoupling zdec 1089 ± 1 0.1%
width of decoupling ∆zdec 195 ± 2 1%
redshift of reionization zr 20± 10 2%

From the observations of the CMB anisotropies it is possibleto determine most of the parame-
ters of the Standard Cosmological Model with few percent accuracy, see Table 2. However, there are
many degeneracies between parameters and it is difficult to disentangle one from another. For instance,
as mentioned above, the first peak in the photon distributioncorresponds to overdensities that have un-
dergone half an oscillation, that is, a compression, and appear at a scale associated with the size of the
horizon at last scattering, about1◦ projected in the sky today. Since photons scatter off baryons, they
will also feel the acoustic wave and create a peak in the correlation function. The height of the peak
is proportional to the amount of baryons: the larger the baryon content of the universe, the higher the
peak. The position of the peak in the power spectrum depends on the geometrical size of the particle
horizon at last scattering. Since photons travel along geodesics, the projected size of the causal horizon
at decoupling depends on whether the universe is flat, open orclosed. In a flat universe the geodesics
are straight lines and, by looking at the angular scale of thefirst acoustic peak, we would be measuring
the actual size of the horizon at last scattering. In an open universe, the geodesics are inward-curved tra-
jectories, and therefore the projected size on the sky appears smaller. In this case, the first acoustic peak
should occur at higher multipoles or smaller angular scales. On the other hand, for a closed universe,
the first peak occurs at smaller multipoles or larger angularscales. The dependence of the position of



the first acoustic peak on the spatial curvature can be approximately given bylpeak ≃ 220Ω
−1/2
0 , where

Ω0 = ΩM+ΩΛ = 1−ΩK. Present observations by WMAP and other experiments giveΩ0 = 1.00±0.02
at one standard deviation [20].

Fig. 25: The(ΩM , ΩΛ) plane with the present data set of cosmological observations − the acceleration of the universe, the

large scale structure and the CMB anisotropies− as well as the future determinations by SNAP and Planck of thefundamental

parameters which define our Standard Model of Cosmology.

The other acoustic peaks occur at harmonics of this, corresponding to smaller angular scales. Since
the amplitude and position of the primary and secondary peaks are directly determined by the sound
speed (and, hence, the equation of state) and by the geometryand expansion of the universe, they can
be used as a powerful test of the density of baryons and dark matter, and other cosmological parameters.
With the joined data from WMAP, VSA, CBI and ACBAR, we have rather good evidence of the existence
of the second and third acoustic peaks, which confirms one of the most important predictions of inflation
− the non-causal origin of the primordial spectrum of perturbations−, and rules out cosmological defects
as the dominant source of structure in the universe [66]. Moreover, since the observations of CMB
anisotropies now cover almost three orders of magnitude in the size of perturbations, we can determine
the much better accuracy the value of the spectral tilt,n = 0.98 ± 0.03, which is compatible with the
approximate scale invariant spectrum needed for structureformation, and is a prediction of the simplest
models of inflation. Soon after the release of data from WMAP,there was some expectation at the claim
of a scale-dependent tilt. Nowadays, with better resolution in the linear matter power spectrum from
SDSS [67], we can not conclude that the spectral tilt has any observable dependence on scale.

The microwave background has become also a testing ground for theories of particle physics. In



particular, it already gives stringent constraints on the mass of the neutrino, when analysed together with
large scale structure observations. Assuming a flatΛCDM model, the 2-sigma upper bounds on the sum
of the masses of light neutrinos is

∑

mν < 1.0 eV for degenerate neutrinos (i.e. without a large hierachy
between them) if we don’t impose any priors, and it comes downto

∑

mν < 0.6 eV if one imposes
the bounds coming from the HST measurements of the rate of expansion and the supernova data on the
present acceleration of the universe [68]. The final bound onthe neutrino density can be expressed as
Ων h

2 =
∑

mν/93.2 eV ≤ 0.01. In the future, both with Planck and with the Atacama Cosmology
Telescope (ACT) we will be able to put constraints on the neutrino masses down to the 0.1 eV level.

Moreover, the present data is good enough that we can start toput constraints on the models of in-
flation that give rise to structure. In particular, multifield models of inflation predict a mixture of adiabatic
and isocurvature perturbations,9 and their signatures in the cosmic microwave background anisotropies
and the matter power spectrum of large scale structure are specific and perfectly distinguishable. Nowa-
days, thanks to precise CMB, LSS and SNIa data, one can put rather stringent limits on the relative
fraction and correlation of the isocurvature modes to the dominant adiabatic perturbations [69].

We can summarize this Section by showing the region in parameter space where we stand nowa-
days, thanks to the recent cosmological observations. We have plotted that region in Fig. 25. One could
also superimpose the contour lines corresponding to equalt0H0 lines, as a cross check. It is extraordi-
nary that only in the last few months we have been able to reduce the concordance region to where it
stands today, where all the different observations seem to converge. There are still many uncertainties,
mainly systematic; however, those are quickly decreasing and becoming predominantly statistical. In the
near future, with precise observations of the anisotropiesin the microwave background temperature and
polarization anisotropies, thanks to Planck satellite, wewill be able to reduce those uncertainties to the
level of one percent. This is the reason why cosmologists areso excited and why it is claimed that we
live in the Golden Age of Cosmology.

4. THE INFLATIONARY PARADIGM

The hot Big Bang theory is nowadays a very robust edifice, withmany independent observational checks:
the expansion of the universe; the abundance of light elements; the cosmic microwave background; a
predicted age of the universe compatible with the age of the oldest objects in it, and the formation of
structure via gravitational collapse of initially small inhomogeneities. Today, these observations are
confirmed to within a few percent accuracy, and have helped establish the hot Big Bang as the preferred
model of the universe. All the physics involved in the above observations is routinely tested in the
laboratory (atomic and nuclear physics experiments) or in the solar system (general relativity).

However, this theory leaves a range of crucial questions unanswered, most of which are initial
conditions’ problems. There is the reasonable assumption that these cosmological problems will be
solved or explained bynew physical principlesat high energies, in the early universe. This assumption
leads to the natural conclusion that accurate observationsof the present state of the universe may shed
light onto processes and physical laws at energies above those reachable by particle accelerators, present
or future. We will see that this is a very optimistic approachindeed, and that there are many unresolved
issues related to those problems. However, there might be inthe near future reasons to be optimistic.

4.1 Shortcomings of Big Bang Cosmology

The Big Bang theory could not explain the origin of matter andstructure in the universe; that is, the
origin of the matter–antimatter asymmetry, without which the universe today would be filled by a uniform
radiation continuosly expanding and cooling, with no traces of matter, and thus without the possibility
to form gravitationally bound systems like galaxies, starsand planets that could sustain life. Moreover,

9This mixture is generic, unless all the fields thermalize simultaneously at reheating, just after inflation, in which case the
entropy perturbations that would give rise to the isocurvature modes disappear.



the standard Big Bang theory assumes, but cannot explain, the origin of the extraordinary smoothness
and flatness of the universe on the very large scales seen by the microwave background probes and the
largest galaxy catalogs. It cannot explain the origin of theprimordial density perturbations that gave rise
to cosmic structures like galaxies, clusters and superclusters, via gravitational collapse; the quantity and
nature of the dark matter that we believe holds the universe together; nor the origin of the Big Bang itself.

A summary [10] of the problems that the Big Bang theory cannotexplain is:

• The global structure of the universe.
- Why is the universe so close to spatial flatness?
- Why is matter so homogeneously distributed on large scales?

• The origin of structure in the universe.
- How did the primordial spectrum of density perturbations originate?

• The origin of matter and radiation.
- Where does all the energy in the universe come from?
- What is the nature of the dark matter in the universe?
- How did the matter-antimatter asymmetry arise?

• The initial singularity.
- Did the universe have a beginning?
- What is the global structure of the universe beyond our observable patch?

Let me discuss one by one the different issues:

4.11 The Flatness Problem

The Big Bang theory assumes but cannot explain the extraordinary spatial flatness of our local patch of
the universe. In the general FRW metric (2) the parameterK that characterizes spatial curvature is a free
parameter. There is nothing in the theory that determines this parameter a priori. However, it is directly
related, via the Friedmann equation (8), to the dynamics, and thus the matter content, of the universe,

K =
8πG

3
ρa2 −H2a2 =

8πG

3
ρa2

(Ω− 1

Ω

)

. (119)

We can therefore define a new variable,

x ≡ Ω− 1

Ω
=

const.

ρa2
, (120)

whose time evolution is given by

x′ =
dx

dN
= (1 + 3ω)x , (121)

whereN = ln(a/ai) characterizes thenumber ofe-folds of universe expansion (dN = Hdt) and
where we have used Eq. (7) for the time evolution of the total energy,ρa3, which only depends on the
barotropic ratioω. It is clear from Eq. (121) that the phase-space diagram(x, x′) presents an unstable
critical (saddle) point atx = 0 for ω > −1/3, i.e. for the radiation (ω = 1/3) and matter (ω = 0) eras.
A small perturbation fromx = 0 will drive the system towardsx = ±∞. Since we know the universe
went through both the radiation era (because of primordial nucleosynthesis) and the matter era (because
of structure formation), tiny deviations fromΩ = 1 would have grown since then, such that today

x0 =
Ω0 − 1

Ω0
= xin

(Tin

Teq

)2
(1 + zeq) . (122)

In order that today’s value be in the range0.1 < Ω0 < 1.2, or x0 ≈ O(1), it is required that at, say,
primordial nucleosynthesis (T

NS
≃ 106 Teq) its value be

Ω(t
NS
) = 1± 10−15 , (123)



which represents a tremendous finetuning. Perhaps the universe indeed started with such a peculiar
initial condition, but it is epistemologically more satisfying if we give a fundamental dynamical reason
for the universe to have started so close to spatial flatness.These arguments were first used by Robert
Dicke in the 1960s, much before inflation. He argued that the most natural initial condition for the
spatial curvature should have been the Planck scale curvature, (3)R = 6K/l2P, where the Planck length
is lP = (h̄G/c3)1/2 = 1.62 × 10−33 cm, that is, 60 orders of magnitude smaller than the present size
of the universe,a0 = 1.38 × 1028 cm. A universe with this immense curvature would have collapsed
within a Planck time,tP = (h̄G/c5)1/2 = 5.39 × 10−44 s, again 60 orders of magnitude smaller than
the present age of the universe,t0 = 4.1 × 1017 s. Therefore, the flatness problem is also related to the
Age Problem, why is it that the universe is so old and flat when,under ordinary circumstances (based on
the fundamental scale of gravity) it should have lasted onlya Planck time and reached a size of order the
Planck length? As we will see, inflation gives a dynamical reason to such a peculiar initial condition.

4.12 The Homogeneity Problem

An expanding universe hasparticle horizons, that is, spatial regions beyond which causal communica-
tion cannot occur. The horizon distance can be defined as the maximum distance that light could have
travelled since the origin of the universe [15],

dH(t) ≡ a(t)

∫ t

0

dt′

a(t′)
∼ H−1(t) , (124)

which is proportional to the Hubble scale.10 For instance, at the beginning of nucleosynthesis the horizon
distance is a few light-seconds, but growslinearly with time and by the end of nucleosynthesis it is a
few light-minutes, i.e. a factor 100 larger, while the scalefactor has increasedonly a factor of 10. The
fact that the causal horizon increases faster,dH ∼ t, than the scale factor,a ∼ t1/2, implies that at any
given time the universe contains regions within itself that, according to the Big Bang theory, werenever
in causal contact before. For instance, the number of causally disconnected regions at a given redshiftz
present in our causal volume today,dH(t0) ≡ a0, is

NCD(z) ∼
(

a(t)

dH(t)

)3

≃ (1 + z)3/2 , (125)

which, for the time of decoupling, is of orderNCD(zdec) ∼ 105 ≫ 1.

This phenomenon is particularly acute in the case of the observed microwave background. Infor-
mation cannot travel faster than the speed of light, so the causal region at the time of photon decoupling
could not be larger thandH(tdec) ∼ 3× 105 light years across, or about1◦ projected in the sky today. So
why should regions that are separated by more than1◦ in the sky today have exactly the same tempera-
ture, to within 10 ppm, when the photons that come from those two distant regions could not have been
in causal contact when they were emitted? This constitutes the so-called horizon problem, see Fig. 26,
and was first discussed by Robert Dicke in the 1970s as a profound inconsistency of the Big Bang theory.

4.2 Cosmological Inflation

In the 1980s, a new paradigm, deeply rooted in fundamental physics, was put forward by Alan H.
Guth [71], Andrei D. Linde [72] and others [73, 74, 75], to address these fundamental questions. Ac-
cording to the inflationary paradigm, the early universe went through a period of exponential expansion,
driven by the approximately constant energy density of a scalar field called the inflaton. In modern
physics, elementary particles are represented by quantum fields, which resemble the familiar electric,
magnetic and gravitational fields. A field is simply a function of space and time whose quantum oscil-
lations are interpreted as particles. In our case, the inflaton field has, associated with it, a large potential

10For the radiation era, the horizon distance is equal to the Hubble scale. For the matter era it is twice the Hubble scale.
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Fig. 26: Perhaps the most acute problem of the Big Bang theoryis explaining the extraordinary homogeneity and isotropy of the

microwave background, see Fig. 10. At the time of decoupling, the volume that gave rise to our present universe containedmany

causally disconnected regions (top figure). Today we observe a blackbody spectrum of photons coming from those regions and

they appear to have the same temperature,T1 = T2, to one part in105. Why is the universe so homogeneous? This constitutes

the so-called horizon problem, which is spectacularly solved by inflation. From Ref. [70].

energy density, which drives the exponential expansion during inflation, see Fig. 27. We know from gen-
eral relativity that the density of matter determines the expansion of the universe, but a constant energy
density acts in a very peculiar way: as a repulsive force thatmakes any two points in space separate at
exponentially large speeds. (This does not violate the lawsof causality because there is no information
carried along in the expansion, it is simply the stretching of space-time.)

This superluminal expansion is capable of explaining the large scale homogeneity of our observ-
able universe and, in particular, why the microwave background looks so isotropic: regions separated
today by more than1◦ in the sky were, in fact, in causal contact before inflation, but were stretched to
cosmological distances by the expansion. Any inhomogeneities present before the tremendous expansion
would be washed out. This explains why photons from supposedly causally disconneted regions have
actually the same spectral distribution with the same temperature, see Fig. 26.

Moreover, in the usual Big Bang scenario a flat universe, one in which the gravitational attraction
of matter is exactly balanced by the cosmic expansion, is unstable under perturbations: a small deviation
from flatness is amplified and soon produces either an empty universe or a collapsed one. As we dis-
cussed above, for the universe to be nearly flat today, it musthave been extremely flat at nucleosynthesis,
deviations not exceeding more than one part in1015. This extreme fine tuning of initial conditions was
also solved by the inflationary paradigm, see Fig. 28. Thus inflation is an extremely elegant hypothesis
that explains how a region much, much greater that our own observable universe could have become
smooth and flat without recourse toad hocinitial conditions. Furthermore, inflation dilutes away any
“unwanted” relic species that could have remained from early universe phase transitions, like monopoles,
cosmic strings, etc., which are predicted in grand unified theories and whose energy density could be so
large that the universe would have become unstable, and collapsed, long ago. These relics are diluted by



Fig. 27: The inflaton field can be represented as a ball rollingdown a hill. During inflation, the energy density is approximately

constant, driving the tremendous expansion of the universe. When the ball starts to oscillate around the bottom of the hill,

inflation ends and the inflaton energy decays into particles.In certain cases, the coherent oscillations of the inflaton could

generate a resonant production of particles which soon thermalize, reheating the universe. From Ref. [70].

the superluminal expansion, which leaves at most one of these particles per causal horizon, making them
harmless to the subsequent evolution of the universe.

The only thing we know about this peculiar scalar field, theinflaton, is that it has a mass and
a self-interaction potentialV (φ) but we ignore everything else, even the scale at which its dynamics
determines the superluminal expansion. In particular, we still do not know the nature of the inflaton field
itself, is it some newfundamentalscalar field in the electroweak symmetry breaking sector, oris it just
someeffectivedescription of a more fundamental high energy interaction?Hopefully, in the near future,
experiments in particle physics might give us a clue to its nature. Inflation had its original inspiration in
the Higgs field, the scalar field supposed to be responsible for the masses of elementary particles (quarks
and leptons) and the breaking of the electroweak symmetry. Such a field has not been found yet, and its
discovery at the future particle colliders would help understand one of the truly fundamental problems in
physics, the origin of masses. If the experiments discover something completely new and unexpected, it
would automatically affect the idea of inflation at a fundamental level.

4.21 Homogeneous scalar field dynamics

In this subsection I will describe the theoretical basis forthe phenomenon of inflation. Consider a scalar
field φ, a singlet under any given interaction, with an effective potentialV (φ). The Lagrangian for such
a field in a curved background is

Linf =
1

2
gµν∂µφ∂νφ− V (φ) , (126)

whose evolution equation in a Friedmann-Robertson-Walkermetric (2) and for ahomogeneousfieldφ(t)
is given by

φ̈+ 3Hφ̇+ V ′(φ) = 0 , (127)

whereH is the rate of expansion, together with the Einstein equations,

H2 =
κ2

3

(1

2
φ̇2 + V (φ)

)

, (128)



Fig. 28: The exponential expansion during inflation made theradius of curvature of the universe so large that our observable

patch of the universe today appears essentialy flat, analogous (in three dimensions) to how the surface of a balloon appears

flatter and flatter as we inflate it to enormous sizes. This is a crucial prediction of cosmological inflation that will be tested to

extraordinary accuracy in the next few years. From Ref. [74,70].

Ḣ = −κ2

2
φ̇2 , (129)

whereκ2 ≡ 8πG. The dynamics of inflation can be described as a perfect fluid (5) with a time dependent
pressure and energy density given by

ρ =
1

2
φ̇2 + V (φ) , (130)

p =
1

2
φ̇2 − V (φ) . (131)

The field evolution equation (127) can then be written as the energy conservation equation,

ρ̇+ 3H(ρ+ p) = 0 . (132)

If the potential energy density of the scalar field dominatesthe kinetic energy,V (φ) ≫ φ̇2, then we see
that

p ≃ −ρ ⇒ ρ ≃ const. ⇒ H(φ) ≃ const. , (133)

which leads to the solution

a(t) ∼ exp(Ht) ⇒ ä

a
> 0 accelerated expansion . (134)

Using the definition of the number ofe-folds,N = ln(a/ai), we see that the scale factor grows expo-
nentially, a(N) = ai exp(N). This solution of the Einstein equations solves immediately the flatness



problem. Recall that the problem with the radiation and matter eras is thatΩ = 1 (x = 0) is an un-
stable critical point in phase-space. However, during inflation, with p ≃ −ρ ⇒ ω ≃ −1, we have
that 1 + 3ω ≥ 0 and thereforex = 0 is a stableattractor of the equations of motion, see Eq. (121).
As a consequence, what seemed anad hocinitial condition, becomes a naturalpredictionof inflation.
Suppose that during inflation the scale factor increasedN e-folds, then

x0 = xin e
−2N

(Trh

Teq

)2
(1 + zeq) ≃ e−2N 1056 ≤ 1 ⇒ N ≥ 65 , (135)

where we have assumed that inflation ended at the scaleVend, and the transfer of the inflaton energy
density to thermal radiation at reheating occurred almost instantaneously11 at the temperatureTrh ∼
V

1/4
end ∼ 1015 GeV. Note that we can now have initial conditions with a largeuncertainty,xin ≃ 1, and

still have todayx0 ≃ 1, thanks to the inflationary attractor towardsΩ = 1. This can be understood very
easily by realizing that the three curvature evolves duringinflation as

(3)R =
6K

a2
= (3)Rin e

−2N −→ 0 , for N ≫ 1 . (136)

Therefore, if cosmological inflation lasted over 65e-folds, as most models predict, then today the uni-
verse (or at least our local patch) should be exactly flat, seeFig. 28, a prediction that can be tested with
great accuracy in the near future and for which already seemsto be some evidence from observations of
the microwave background [87].

Furthermore, inflation also solves the homogeneity problemin a spectacular way. First of all, due
to the superluminal expansion, any inhomogeneity existingprior to inflation will be washed out,

δk ∼
(

k

aH

)2

Φk ∝ e−2N −→ 0 , for N ≫ 1 . (137)

Moreover, since the scale factor grows exponentially, while the horizon distance remains essentially
constant,dH(t) ≃ H−1 = const., any scale within the horizon during inflation will bestretched by the
superluminal expansion to enormous distances, in such a waythat at photon decoupling all the causally
disconnected regions that encompass our present horizon actually come from a single region during
inflation, about 65e-folds before the end. This is the reason why two points separated more than1◦

in the sky have the same backbody temperature, as observed bythe COBE satellite: they were actually
in causal contact during inflation. There is at present no other proposal known that could solve the
homogeneity problem without invoquing an acausal mechanism like inflation.

Finally, any relic particle species (relativistic or not) existing prior to inflation will be diluted by
the expansion,

ρM ∝ a−3 ∼ e−3N −→ 0 , for N ≫ 1 , (138)

ρR ∝ a−4 ∼ e−4N −→ 0 , for N ≫ 1 . (139)

Note that the vacuum energy densityρv remains constant under the expansion, and therefore, very soon
it is the only energy density remaining to drive the expansion of the universe.

4.22 The slow-roll approximation

In order to simplify the evolution equations during inflation, we will consider the slow-roll approximation
(SRA). Suppose that, during inflation, the scalar field evolves very slowly down its effective potential,

11There could be a small delay in thermalization, due to the intrinsic inefficiency of reheating, but this does not change
significantly the required number ofe-folds.



then we can define the slow-roll parameters [76],

ǫ ≡ − Ḣ

H2
=

κ2

2

φ̇2

H2
≪ 1 , (140)

δ ≡ − φ̈

Hφ̇
≪ 1 , (141)

ξ ≡
...
φ

H2φ̇
− δ2 ≪ 1 . (142)

It is easy to see that the condition

ǫ < 1 ⇐⇒ ä

a
> 0 (143)

characterizes inflation: it is all you need for superluminalexpansion, i.e. for the horizon distance to grow
more slowly than the scale factor, in order to solve the homogeneity problem, as well as for the spatial
curvature to decay faster than usual, in order to solve the flatness problem.

The number ofe-folds during inflation can be written with the help of Eq. (140) as

N = ln
aend
ai

=

∫ te

ti

Hdt =

∫ φe

φi

κdφ
√

2ǫ(φ)
, (144)

which is an exact expression in terms ofǫ(φ).

In the limit given by Eqs. (140), the evolution equations (127) and (128) become

H2
(

1− ǫ

3

)

≃ H2 =
κ2

3
V (φ) , (145)

3Hφ̇
(

1− δ

3

)

≃ 3Hφ̇ = −V ′(φ) . (146)

Note that this corresponds to a reduction of the dimensionality of phase-space from two to one dimen-
sions,H(φ, φ̇) → H(φ). In fact, it is possible to prove a theorem, for single-field inflation, which
states that the slow-roll approximation is an attractor of the equations of motion, and thus we can al-
ways evaluate the inflationary trajectory in phase-space within the SRA, therefore reducing the number
of initial conditions to just one, the initial value of the scalar field. If H(φ) only depends onφ, then
H ′(φ) = −κ2φ̇/2 and we can rewrite the slow-roll parameters (140) as

ǫ =
2

κ2

(

H ′(φ)

H(φ)

)2

≃ 1

2κ2

(

V ′(φ)

V (φ)

)2

≡ ǫV ≪ 1 , (147)

δ =
2

κ2
H ′′(φ)

H(φ)
≃ 1

κ2
V ′′(φ)

V (φ)
− 1

2κ2

(

V ′(φ)

V (φ)

)2

≡ ηV − ǫV ≪ 1 , (148)

ξ =
4

κ4
H ′(φ)H ′′′(φ)

H2(φ)
≃ 1

κ4
V ′(φ)V ′′′(φ)

V 2(φ)
− 3

2κ4
V ′′(φ)

V (φ)

(

V ′(φ)

V (φ)

)2

+
3

4κ4

(

V ′(φ)

V (φ)

)4

≡ ξV − 3ηV ǫV + 3ǫ2V ≪ 1 . (149)

These expressions define the new slow-roll parametersǫV , ηV andξV . The number ofe-folds can also
be rewritten in this approximation as

N ≃
∫ φe

φi

κdφ
√

2ǫV (φ)
= κ2

∫ φe

φi

V (φ) dφ

V ′(φ)
, (150)

a very useful expression for evaluatingN for a given effective scalar potentialV (φ).



4.3 The origin of density perturbations

If cosmological inflation made the universe so extremely flatand homogeneous, where did the galaxies
and clusters of galaxies come from? One of the most astonishing predictions of inflation, one that was not
even expected, is that quantum fluctuations of the inflaton field are stretched by the exponential expansion
and generate large-scale perturbations in the metric. Inflaton fluctuations are small wave packets of
energy that, according to general relativity, modify the space-time fabric, creating a whole spectrum of
curvature perturbations. The use of the word spectrum here is closely related to the case of light waves
propagating in a medium: a spectrum characterizes the amplitude of each given wavelength. In the
case of inflation, the inflaton fluctuations induce waves in the space-time metric that can be decomposed
into different wavelengths, all with approximately the same amplitude, that is, corresponding to a scale-
invariant spectrum. These patterns of perturbations in themetric are like fingerprints that unequivocally
characterize a period of inflation. When matter fell in the troughs of these waves, it created density
perturbations that collapsed gravitationally to form galaxies, clusters and superclusters of galaxies, with
a spectrum that is also scale invariant. Such a type of spectrum was proposed in the early 1970s (before
inflation) by Harrison and Zel’dovich [26], to explain the distribution of galaxies and clusters of galaxies
on very large scales in our observable universe. Perhaps themost interesting aspect of structure formation
is the possibility that the detailed knowledge of what seeded galaxies and clusters of galaxies will allow
us to test the idea of inflation.

4.31 Reparametrization invariant perturbation theory

Until now we have considered only the unperturbed FRW metricdescribed by a scale factora(t) and a
homogeneous scalar fieldφ(t),

ds2 = a2(η)[− dη2 + γij dx
idxj] , (151)

φ = φ(η) , (152)

whereη =
∫

dt/a(t) is the conformal time, under which the background equationsof motion can be
written as

H2 =
κ2

3

(

1

2
φ′2 + a2V (φ)

)

, (153)

H′ −H2 = − κ2

2
φ′2 , (154)

φ′′ + 2Hφ′ + a2V ′(φ) = 0 , (155)

whereH = aH andφ′ = aφ̇.

During inflation, the quantum fluctuations of the scalar fieldwill induce metric perturbations which
will backreact on the scalar field. Let us consider, in linearperturbation theory, the most general line ele-
ment with both scalar and tensor metric perturbations [77],12 together with the scalar field perturbations

ds2 = a2(η)
[

− (1 + 2A)dη2 + 2B|idx
idη +

{

(1 + 2R)γij + 2E|ij + 2hij
}

dxidxj
]

, (156)

φ = φ(η) + δφ(η, xi) . (157)

The indices{i, j} label the three-dimensional spatial coordinates with metric γij , and the|i denotes
covariant derivative with respect to that metric. The gaugeinvariant tensor perturbationhij corresponds
to a transverse traceless gravitational wave,∇ihij = hii = 0. The four scalar perturbations(A,B,R, E)
aregauge dependentfunctions of(η, xi). Under a general coordinate (gauge) transformation [77, 78]

η̃ = η + ξ0(η, xi) , (158)

x̃i = xi + γijξ|j(η, x
i) , (159)

12Note that inflation cannot generate, to linear order, a vector perturbation.



with arbitrary functions(ξ0, ξ), the scalar and tensor perturbations transform, to linear order, as

Ã = A− ξ0
′ −Hξ0 , B̃ = B + ξ0 − ξ′ , (160)

R̃ = R−Hξ0 , Ẽ = E − ξ , (161)

h̃ij = hij , (162)

where a prime denotes derivative with respect to conformal time. It is possible to construct, however,
two gauge-invariant gravitational potentials [77, 78],

Φ = A+ (B − E′)′ +H(B − E′) , (163)

Ψ = R+H(B − E′) , (164)

which are related through the perturbed Einstein equations,

Φ = Ψ , (165)

k2 − 3K

a2
Ψ =

κ2

2
δρ , (166)

whereδρ is the gauge-invariant density perturbation, and the latter expression is nothing but the Poisson
equation for the gravitational potential, written in relativistic form.

During inflation, the energy density is given in terms of a scalar field, and thus the gauge-invariant
equations for the perturbations on comoving hypersurfaces(constant energy density hypersurfaces) are

Φ′′ + 3HΦ′ + (H′ + 2H2)Φ =
κ2

2
[φ′δφ′ − a2V ′(φ)δφ] , (167)

−∇2Φ+ 3HΦ′ + (H′ + 2H2)Φ = −κ2

2
[φ′δφ′ + a2V ′(φ)δφ] , (168)

Φ′ +HΦ =
κ2

2
φ′δφ , (169)

δφ′′ + 2Hδφ′ −∇2δφ = 4φ′Φ′ − 2a2V ′(φ)Φ− a2V ′′(φ)δφ . (170)

This system of equations seem too difficult to solve at first sight. However, there is a gauge
invariant combination of variables that allows one to find exact solutions. Let us define [78]

u ≡ aδφ+ zΦ , (171)

z ≡ a
φ′

H . (172)

Under this redefinition, the above equations simplify enormously to just three independent equations,

u′′ −∇2u− z′′

z
u = 0 , (173)

∇2Φ =
κ2

2

H
a2

(zu′ − z′u) , (174)

(a2Φ

H
)′

=
κ2

2
zu . (175)

From Equation (173) we can find a solutionu(z), which substituted into (175) can be integrated to give
Φ(z), and together withu(z) allow us to obtainδφ(z).



4.32 Quantum Field Theory in curved space-time

Until now we have treated the perturbations as classical, but we should in fact consider the perturbations
Φ andδφ as quantum fields. Note that the perturbed action for the scalar modeu can be written as

δS =
1

2

∫

d3x dη
[

(u′)2 − (∇u)2 + z′′

z
u2
]

. (176)

In order to quantize the fieldu in the curved background defined by the metric (151), we can write the
operator

û(η,x) =

∫

d3k

(2π)3/2

[

uk(η) âk e
ik·x + u∗k(η) â

†
k
e−ik·x

]

, (177)

where the creation and annihilation operators satisfy the commutation relation of bosonic fields, and the
scalar field’s Fock space is defined through the vacuum condition,

[âk, â
†
k′ ] = δ3(k− k′) , (178)

âk|0〉 = 0 . (179)

Note that we are not assuming that the inflaton is a fundamental scalar field, but that is can be written as
a quantum field with its commutation relations (as much as a pion can be described as a quantum field).

The equations of motion for each modeuk(η) are decoupled in linear perturbation theory,

u′′k +
(

k2 − z′′

z

)

uk = 0 . (180)

The ratioz′′/z acts like a time-dependent potential for this Schrödingerlike equation. In order to find
exact solutions to the mode equation, we will use the slow-roll parameters (140), see Ref. [76]

ǫ = 1− H
′

H2
=

κ2

2

z2

a2
, (181)

δ = 1− φ′′

Hφ′
= 1 + ǫ− z′

Hz , (182)

ξ = −
(

2− ǫ− 3δ + δ2 − φ′′′

H2φ′

)

. (183)

In terms of these parameters, the conformal time and the effective potential for theuk mode can be
written as

η =
−1
H +

∫

ǫda

aH , (184)

z′′

z
= H2

[

(1 + ǫ− δ)(2 − δ) +H−1(ǫ′ − δ′)
]

. (185)

Note that the slow-roll parameters, (181) and (182), can be taken asconstant,13 to orderǫ2,

ǫ′ = 2H
(

ǫ2 − ǫδ
)

= O(ǫ2) ,

δ′ = H
(

ǫδ − ξ
)

= O(ǫ2) .
(186)

In that case, for constant slow-roll parameters, we can write

η =
−1
H

1

1− ǫ
, (187)

z′′

z
=

1

η2

(

ν2 − 1

4

)

, where ν =
1 + ǫ− δ

1− ǫ
+

1

2
. (188)

13For instance, there are models of inflation, like power-law inflation,a(t) ∼ tp, whereǫ = δ = 1/p < 1, that give constant
slow-roll parameters.



We are now going to search for approximate solutions of the mode equation (180), where the
effective potential (185) is of orderz′′/z ≃ 2H2 in the slow-roll approximation. In quasi-de Sitter there
is a characteristic scale given by the (event) horizon size or Hubble scale during inflation,H−1. There
will be modesuk with physical wavelengths much smaller than this scale,k/a ≫ H, that are well
within the de Sitter horizon and therefore do not feel the curvature of space-time. On the other hand,
there will be modes with physical wavelengths much greater than the Hubble scale,k/a ≪ H. In these
two asymptotic regimes, the solutions can be written as

uk =
1√
2k

e−ikη k ≫ aH , (189)

uk = C1 z k ≪ aH . (190)

In the limit k ≫ aH the modes behave like ordinary quantum modes in Minkowsky space-time, ap-
propriately normalized, while in the opposite limit,u/z becomes constant on superhorizon scales. For
approximately constant slow-roll parameters one can find exact solutions to (180), with the effective
potential given by (188), that interpolate between the two asymptotic solutions,

uk(η) =

√
π

2
ei(ν+

1
2
)π
2 (−η)1/2 H (1)

ν (−kη) , (191)

whereH (1)
ν (z) is the Hankel function of the first kind [79], andν is given by (188) in terms of the

slow-roll parameters. In the limitkη → 0, the solution becomes

|uk| =
2ν−

3
2√

2k

Γ(ν)

Γ(32)
(−kη) 1

2
−ν ≡ C(ν)√

2k

( k

aH

)
1
2
−ν

, (192)

C(ν) = 2ν−
3
2
Γ(ν)

Γ(32)
(1− ǫ)ν−

1
2 ≃ 1 for ǫ, δ ≪ 1 . (193)

We can now computeΦ andδφ from the super-Hubble-scale mode solution (190), fork ≪ aH.
Substituting into Eq. (175), we find

Φ = C1

(

1− H
a2

∫

a2dη
)

+ C2
H
a2

, (194)

δφ =
C1

a2

∫

a2dη − C2

a2
. (195)

The term proportional toC1 corresponds to the growing solution, while that proportional to C2 corre-
sponds to the decaying solution, which can soon be ignored. These quantities are gauge invariant but
evolve with time outside the horizon, during inflation, and before entering again the horizon during the
radiation or matter eras. We would like to write an expression for a gauge invariant quantity that is
alsoconstantfor superhorizon modes. Fortunately, in the case of adiabatic perturbations, there is such a
quantity:

ζ ≡ Φ+
1

ǫH (Φ′ +HΦ) = u

z
, (196)

which is constant, see Eq. (190), fork ≪ aH. In fact, this quantityζ is identical, for superhorizon
modes, to the gauge invariant curvature metric perturbation Rc on comoving (constant energy density)
hypersurfaces, see Ref. [77, 80],

ζ = Rc +
1

ǫH2
∇2Φ . (197)

Using Eq. (174) we can write the evolution equation forζ = u
z as ζ ′ = 1

ǫH ∇2Φ, which confirms that
ζ is constant for (adiabatic14) superhorizon modes,k ≪ aH. Therefore, we can evaluate the Newtonian

14This conservation fails for entropy or isocurvature perturbations, see Ref. [80].



potentialΦk when the perturbation reenters the horizon during radiation/matter eras in terms of the
curvature perturbationRk when it left the Hubble scale during inflation,

Φk =
(

1− H
a2

∫

a2dη
)

Rk =
3 + 3ω

5 + 3ω
Rk =







2
3 Rk radiation era ,

3
5 Rk matter era .

(198)

Let us now compute the tensor or gravitational wave metric perturbations generated during infla-
tion. The perturbed action for the tensor mode can be writtenas

δS =
1

2

∫

d3x dη
a2

2κ2

[

(h′ij)
2 − (∇hij)2

]

, (199)

with the tensor fieldhij considered as a quantum field,

ĥij(η,x) =

∫

d3k

(2π)3/2

∑

λ=1,2

[

hk(η) eij(k, λ) âk,λ e
ik·x + h.c.

]

, (200)

whereeij(k, λ) are the two polarization tensors, satisfying symmetric, transverse and traceless conditions

eij = eji , kieij = 0 , eii = 0 , (201)

eij(−k, λ) = e∗ij(k, λ) ,
∑

λ

e∗ij(k, λ)e
ij(k, λ) = 4 , (202)

while the creation and annihilation operators satisfy the usual commutation relation of bosonic fields,
Eq. (178). We can now redefine our gauge invariant tensor amplitude as

vk(η) =
a√
2κ

hk(η) , (203)

which satisfies the following evolution equation, decoupled for each modevk(η) in linear perturbation
theory,

v′′k +
(

k2 − a′′

a

)

vk = 0 . (204)

The ratioa′′/a acts like a time-dependent potential for this Schrödingerlike equation, analogous to the
termz′′/z for the scalar metric perturbation. For constant slow-rollparameters, the potential becomes

a′′

a
= 2H2

(

1− ǫ

2

)

=
1

η2

(

µ2 − 1

4

)

, (205)

µ =
1

1− ǫ
+

1

2
. (206)

We can solve equation (204) in the two asymptotic regimes,

vk =
1√
2k

e−ikη k ≫ aH , (207)

vk = C a k ≪ aH . (208)

In the limit k ≫ aH the modes behave like ordinary quantum modes in Minkowsky space-time, ap-
propriately normalized, while in the opposite limit, the metric perturbationhk becomesconstanton
superhorizon scales. For constant slow-roll parameters one can find exact solutions to (204), with effec-
tive potential given by (205), that interpolate between thetwo asymptotic solutions. These are identical
to Eq. (191) except for the substitutionν → µ. In the limit kη → 0, the solution becomes

|vk| =
C(µ)√
2k

( k

aH

)
1
2
−µ

. (209)

Since the modehk becomes constant on superhorizon scales, we can evaluate the tensor metric pertur-
bation when it reentered during the radiation or matter era directly in terms of its value during inflation.



4.33 Power spectrum of scalar and tensor metric perturbations

Not only do we expect to measure the amplitude of the metric perturbations generated during inflation
and responsible for the anisotropies in the CMB and density fluctuations in LSS, but we should also be
able to measure its power spectrum, or two-point correlation function in Fourier space. Let us consider
first the scalar metric perturbationsRk, which enter the horizon ata = k/H. Its correlator is given
by [76]

〈0|R∗
kRk′ |0〉 =

|uk|2
z2

δ3(k− k′) ≡ PR(k)
4πk3

(2π)3 δ3(k− k′) , (210)

PR(k) =
k3

2π2

|uk|2
z2

=
κ2

2ǫ

(H

2π

)2 ( k

aH

)3−2ν
≡ A2

S

( k

aH

)ns−1
, (211)

where we have usedRk = ζk = uk

z and Eq. (192). This last equation determines the power spectrum in
terms of its amplitude at horizon-crossing,AS , and a tilt,

ns − 1 ≡ d lnPR(k)
d ln k

= 3− 2ν = 2
(δ − 2ǫ

1− ǫ

)

≃ 2ηV − 6ǫV , (212)

see Eqs. (147), (148). Note from this equation that it is possible, in principle, to obtain from inflation a
scalar tilt which is either positive (n > 1) or negative (n < 1). Furthermore, depending on the particular
inflationary model [81], we can have significant departures from scale invariance.

Note that at horizon entrykη = −1, and thus we can alternatively evaluate the tilt as

ns − 1 ≡ − d lnPR
d ln η

= −2ηH
[

(1− ǫ)− (ǫ− δ) − 1
]

= 2
(δ − 2ǫ

1− ǫ

)

≃ 2ηV − 6ǫV , (213)

and the running of the tilt

dns

d ln k
= − dns

d ln η
= −ηH

(

2ξ + 8ǫ2 − 10ǫδ
)

≃ 2ξV + 24ǫ2V − 16ηV ǫV , (214)

where we have used Eqs. (186).

Let us consider now the tensor (gravitational wave) metric perturbation, which enter the horizon
at a = k/H,

∑

λ

〈0|h∗k,λhk′,λ|0〉 = 4
2κ2

a2
|vk|2δ3(k− k′) ≡ Pg(k)

4πk3
(2π)3 δ3(k− k′) , (215)

Pg(k) = 8κ2
(H

2π

)2 ( k

aH

)3−2µ
≡ A2

T

( k

aH

)nT

, (216)

where we have used Eqs. (203) and (209). Therefore, the powerspectrum can be approximated by a
power-law expression, with amplitudeAT and tilt

nT ≡
d lnPg(k)
d ln k

= 3− 2µ =
−2ǫ
1− ǫ

≃ −2ǫV < 0 , (217)

which is always negative. In the slow-roll approximation,ǫ ≪ 1, the tensor power spectrum is scale
invariant.

Alternatively, we can evaluate the tensor tilt by

nT ≡ −
d lnPg
d ln η

= −2ηH
[

(1− ǫ)− 1
]

=
−2ǫ
1− ǫ

≃ −2ǫV , (218)

and its running by

dnT

d ln k
= − dnT

d ln η
= −ηH

(

4ǫ2 − 4ǫδ
)

≃ 8ǫ2V − 4ηV ǫV , (219)

where we have used Eqs. (186).



4.4 The anisotropies of the microwave background

The metric fluctuations generated during inflation are not only responsible for the density perturbations
that gave rise to galaxies via gravitational collapse, but one should also expect to see such ripples in
the metric as temperature anisotropies in the cosmic microwave background, that is, minute deviations
in the temperature of the blackbody spectrum when we look at different directions in the sky. Such
anisotropies had been looked for ever since Penzias and Wilson’s discovery of the CMB, but had eluded
all detection, until COBE satellite discovered them in 1992, see Fig. 10. The reason why they took so
long to be discovered was that they appear as perturbations in temperature of only one part in105. Soon
after COBE, other groups quickly confirmed the detection of temperature anisotropies at around 30µK,
at higher multipole numbers or smaller angular scales.

4.41 The Sachs-Wolfe effect

The anisotropies corresponding to large angular scales areonly generated via gravitational red-shift
and density perturbations through the Einstein equations,δρ/ρ = −2Φ for adiabatic perturbations; we
can ignore the Doppler contribution, since the perturbation is non-causal. In that case, the temperature
anisotropy in the sky today is given by [82]

δT

T
(θ, φ) =

1

3
Φ(ηLS)Q(η0, θ, φ) + 2

∫ η0

ηLS

drΦ′(η0 − r)Q(r, θ, φ) , (220)

whereη0 is thecoordinate distanceto the last scattering surface, i.e. the present conformal time, while
ηLS ≃ 0 determines that comoving hypersurface. The above expression is known as the Sachs-Wolfe
effect [82], and contains two parts, the intrinsic and the Integrated Sachs-Wolfe (ISW) effect, due to
integration along the line of sight of time variations in thegravitational potential.

In linear perturbation theory, the scalar metric perturbations can be separated intoΦ(η,x) ≡
Φ(η)Q(x), whereQ(x) are the scalar harmonics, eigenfunctions of the Laplacian in three dimensions,
∇2Qklm(r, θ, φ) = −k2Qklm(r, θ, φ). These functions have the general form [83]

Qklm(r, θ, φ) = Πkl(r)Ylm(θ, φ) , (221)

whereYlm(θ, φ) are the usual spherical harmonics [79].

In order to compute the temperature anisotropy associated with the Sachs-Wolfe effect, we have
to know the evolution of the metric perturbation during the matter era,

Φ′′ + 3HΦ′ + a2ΛΦ− 2K Φ = 0 . (222)

In the case of a flat universe without cosmological constant,the Newtonian potential remains constant
during the matter era and only the intrinsic SW effect contributes toδT/T . In case of a non-vanishingΛ,
since its contribution is negligible in the past, most of thephoton’s trajectory towards us is unperturbed,
and the only difference with respect to theΛ = 0 case is an overall factor [86]. We will consider here the
approximationΦ = constant during the matter era and ignore that factor, see Ref. [84].

In a flat universe, the radial part of the eigenfunctions (221) can be written as [83]

Πkl(r) =

√

2

π
k jl(kr) , (223)

wherejl(z) are the spherical Bessel functions [79]. The growing mode solution of the metric perturbation
that left the Hubble scale during inflation contributes to the temperature anisotropies on large scales (220)
as

δT

T
(θ, φ) =

1

3
Φ(ηLS)Q =

1

5
RQ(η0, θ, φ) ≡

∞
∑

l=2

l
∑

m=−l

alm Ylm(θ, φ) , (224)



where we have used the fact that at reentry (at the surface of last scattering) the gauge invariant Newtonian
potentialΦ is related to the curvature perturbationR at Hubble-crossing during inflation, see Eq. (198);
and we have expandedδT/T in spherical harmonics.

We can now compute the two-point correlation function or angular power spectrum,C(θ), of the
CMB anisotropies on large scales, defined as an expansion in multipole number,

C(θ) =

〈

δT

T

∗

(n)
δT

T
(n′)

〉

n·n′=cos θ
=

1

4π

∞
∑

l=2

(2l + 1)Cl Pl(cos θ) , (225)

wherePl(z) are the Legendre polynomials [79], and we have averaged overdifferent universe realiza-
tions. Since the coefficientsalm are isotropic (to first order), we can compute theCl = 〈|alm|2〉 as

C
(S)
l =

4π

25

∫ ∞

0

dk

k
PR(k) j2l (kη0) , (226)

where we have used Eqs. (224) and (210). In the case of scalar metric perturbation produced during
inflation, the scalar power spectrum at reentry is given byPR(k) = A2

S(kη0)
n−1, in the power-law

approximation, see Eq. (211). In that case, one can integrate (226) to give

C
(S)
l =

2π

25
A2

S

Γ[32 ] Γ[1− n−1
2 ] Γ[l + n−1

2 ]

Γ[32 − n−1
2 ] Γ[l + 2− n−1

2 ]
, (227)

l(l + 1)C
(S)
l

2π
=

A2
S

25
= constant , for n = 1 . (228)

This last expression corresponds to what is known as the Sachs-Wolfe plateau, and is the reason why the
coefficientsCl are always plotted multiplied byl(l + 1), see Fig. 3.4.

Tensor metric perturbations also contribute with an approximately constant angular power spec-
trum, l(l + 1)Cl. The Sachs-Wolfe effect for a gauge invariant tensor perturbation is given by [82]

δT

T
(θ, φ) =

∫ η0

ηLS

dr h′(η0 − r)Qrr(r, θ, φ) , (229)

whereQrr is therr-component of the tensor harmonic along the line of sight [83]. The tensor perturba-
tion h during the matter era satisfies the following evolution equation

h′′k + 3H h′k + (k2 + 2K)hk = 0 , (230)

which depends on the wavenumberk, contrary to what happens with the scalar modes, see Eq. (222). For
a flat (K = 0) universe, the solution to this equation ishk(η) = hGk(η), whereh is the constant tensor
metric perturbation at horizon crossing andGk(η) = 3 j1(kη)/kη, normalized so thatGk(0) = 1 at the
surface of last scattering. The radial part of the tensor harmonicQrr in a flat universe can be written
as [83]

Qrr
kl (r) =

[

(l − 1)l(l + 1)(l + 2)

πk2

]1/2 jl(kr)

r2
. (231)

The tensor angular power spectrum can finally be expressed as

C
(T )
l =

9π

4
(l − 1)l(l + 1)(l + 2)

∫ ∞

0

dk

k
Pg(k) I2kl , (232)

Ikl =

∫ x0

0
dx

j2(x0 − x)jl(x)

(x0 − x)x2
, (233)



wherex ≡ kη, andPg(k) is the primordial tensor spectrum (216). For a scale invariant spectrum,
nT = 0, we can integrate (232) to give [85]

l(l + 1)C
(T )
l =

π

36

(

1 +
48π2

385

)

A2
T Bl , (234)

with Bl = (1.1184, 0.8789, . . . , 1.00) for l = 2, 3, . . . , 30. Therefore,l(l + 1)C
(T )
l also becomes

constant for largel. Beyondl ∼ 30, the Sachs-Wolfe expression is not a good approximation andthe
tensor angular power spectrum decays very quickly at largel, see Fig. 31.

4.42 The consistency relation

In spite of the success of inflation in predicting a homogeneous and isotropic background on which to
imprint a scale-invariant spectrum of inhomogeneities, itis difficult to test the idea of inflation. A CMB
cosmologist before the 1980s would have argued thatad hocinitial conditions could have been at the
origin of the homogeneity and flatness of the universe on large scales, while a LSS cosmologist would
have agreed with Harrison and Zel’dovich that the most natural spectrum needed to explain the formation
of structure was a scale-invariant spectrum. The surprise was that inflation incorporated an understanding
of both the globally homogeneous and spatially flat background, andthe approximately scale-invariant
spectrum of perturbations in the same formalism. But that could have been just a coincidence.

What isunique to inflation is the fact that inflation determines not just onebut two primordial
spectra, corresponding to the scalar (density) and tensor (gravitational waves) metric perturbations, from
a single continuous function, the inflaton potentialV (φ). In the slow-roll approximation, one determines,
from V (φ), two continuous functions,PR(k) andPg(k), that in the power-law approximation reduces
to two amplitudes,AS andAT , and two tilts,n andnT . It is clear that there must be a relation between
the four parameters. Indeed, one can see from Eqs. (234) and (228) that the ratio of the tensor to scalar
contribution to the angular power spectrum is proportionalto the tensor tilt [76],

R ≡ C
(T )
l

C
(S)
l

=
25

9

(

1 +
48π2

385

)

2ǫ ≃ −2π nT . (235)

This is a unique prediction of inflation, which could not havebeen postulated a priori by any cosmol-
ogist. If we finally observe a tensor spectrum of anisotropies in the CMB, or a stochastic gravitational
wave background in laser interferometers like LIGO or LISA,with sufficient accuracy to determine their
spectral tilt, one might have some chance to test the idea of inflation, via the consistency relation (235).
For the moment, observations of the microwave background anisotropies suggest that the Sachs-Wolfe
plateau exists, see Fig. 3.4, but it is still premature to determine the tensor contribution. Perhaps in the
near future, from the analysis of polarization as well as temperature anisotropies, with the CMB satellites
MAP and Planck, we might have a chance of determining the validity of the consistency relation.

Assuming that the scalar contribution dominates over the tensor on large scales, i.e.R ≪ 1, one
can actually give a measure of the amplitude of the scalar metric perturbation from the observations of
the Sachs-Wolfe plateau in the angular power spectrum [20],

[

l(l + 1)C
(S)
l

2π

]1/2

=
AS

5
= (1.03 ± 0.07) × 10−5 , (236)

n = 0.97 ± 0.03 . (237)

These measurements can be used to normalize the primordial spectrum and determine the parameters
of the model of inflation [81]. In the near future these parameters will be determined with much better
accuracy, as described in Section 4.4.5.



4.43 The acoustic peaks

The Sachs-Wolfe plateau is a distinctive feature of Fig. 24.These observations confirm the existence of a
primordial spectrum of scalar (density) perturbations on all scales, otherwise the power spectrum would
have started from zero atl = 2. However, we see that the spectrum starts to rise aroundl = 20 towards
the first acoustic peak, where the SW approximation breaks down and the above formulae are no longer
valid.

As mentioned above, the first peak in the photon distributioncorresponds to overdensities that
have undergone half an oscillation, that is, a compression,and appear at a scale associated with the size
of the horizon at last scattering, about1◦ projected in the sky today. Since photons scatter off baryons,
they will also feel the acoustic wave and create a peak in the correlation function. The height of the peak
is proportional to the amount of baryons: the larger the baryon content of the universe, the higher the
peak. The position of the peak in the power spectrum depends on the geometrical size of the particle
horizon at last scattering. Since photons travel along geodesics, the projected size of the causal horizon
at decoupling depends on whether the universe is flat, open orclosed. In a flat universe the geodesics
are straight lines and, by looking at the angular scale of thefirst acoustic peak, we would be measuring
the actual size of the horizon at last scattering. In an open universe, the geodesics are inward-curved
trajectories, and therefore the projected size on the sky appears smaller. In this case, the first acoustic
peak should occur at higher multipoles or smaller angular scales. On the other hand, for a closed universe,
the first peak occurs at smaller multipoles or larger angularscales. The dependence of the position of
the first acoustic peak on the spatial curvature can be approximately given bylpeak ≃ 220Ω

−1/2
0 , where

Ω0 = ΩM + ΩΛ = 1 − ΩK . Past observations from the balloon experiment BOOMERANG [87],
suggested clearly a few years ago that the first peak was between l = 180 and 250 at 95% c.l., with an
amplitudeδT = 80± 10 µK, and therefore the universe was most probably flat. However, with the high
precision WMAP data we can now pinpoint the spatial curvature to a few percent,

Ω0 = 1.02± 0.02 (95% c.l.) (238)

That is, the universe is spatially flat (i.e. Euclidean), within 2% uncertainty, which is much better than
we could ever do before.

0.01 0.1
k [h/Mpc]

Σm ν
0.28 eV

1.5 eV

3 eV

1000

10000

P
g(k

) 
[(

h-1
M

pc
)3 ]

Fig. 29: The dependence of CMB anisotropies and LSS power spectrum on the sum of the mass of all neutrino species. The

blue(red) data corresponds to WMAP(Boomerang, etc.) and SDSS(2dFGRS), for the CMB and LSS respectively.

With Boomerang, CBI, VSA, and specially with WMAP, we have evidence of at least three distinct
acoustic peaks. In the near furture, even before Planck, we may be able to distinguish anothes two. These
peaks should occur at harmonics of the first one, but are typically much lower because of Silk damping.
Since the amplitude and position of the primary and secondary peaks are directly determined by the



sound speed (and, hence, the equation of state) and by the geometry and expansion of the universe,
they can be used as a powerful test of the density of baryons and dark matter, and other cosmological
parameters.

By looking at these patterns in the anisotropies of the microwave background, cosmologists can de-
termine not only the cosmological parameters, but also the primordial spectrum of density perturbations
produced during inflation. It turns out that the observed temperature anisotropies are compatible with
a scale-invariant spectrum, see Eq. (237), as predicted by inflation. This is remarkable, and gives very
strong support to the idea that inflation may indeed be responsible for both the CMB anisotropies and the
large-scale structure of the universe. Different models ofinflation have different specific predictions for
the fine details associated with the spectrum generated during inflation. It is these minute differences that
will allow cosmologists to differentiate between alternative models of inflation and discard those that do
not agree with observations. However, most importantly, perhaps, the pattern of anisotropies predicted
by inflation is completely different from those predicted byalternative models of structure formation,
like cosmic defects: strings, vortices, textures, etc. These are complicated networks of energy density
concentrations left over from an early universe phase transition, analogous to the defects formed in the
laboratory in certain kinds of liquid crystals when they go through a phase transition. The cosmolog-
ical defects have spectral properties very different from those generated by inflation. That is why it is
so important to launch more sensitive instruments, and withbetter angular resolution, to determine the
properties of the CMB anisotropies.

4.44 The new microwave anisotropy satellites, WMAP and Planck

The large amount of information encoded in the anisotropiesof the microwave background is the reason
why both NASA and the European Space Agency have decided to launch two independent satellites to
measure the CMB temperature and polarization anisotropiesto unprecendented accuracy. The Wilkinson
Microwave Anisotropy Probe [88] was launched by NASA at the end of 2000, and has fulfilled most of
our expectation, while Planck [89] is expected to be lanchedby ESA in 2007. There are at the moment
other large proposals like CMB Pol [95], ACT [96], etc. whichwill see the light in the next few years,
see Ref. [90].

As we have emphasized before, the fact that these anisotropies have such a small amplitude allow
for an accurate calculation of the predicted anisotropies in linear perturbation theory. A particular cosmo-
logical model is characterized by a dozen or so parameters: the rate of expansion, the spatial curvature,
the baryon content, the cold dark matter and neutrino contribution, the cosmological constant (vacuum
energy), the reionization parameter (optical depth to the last scattering surface), and various primordial
spectrum parameters like the amplitude and tilt of the adiabatic and isocurvature spectra, the amount of
gravitational waves, non-Gaussian effects, etc. All theseparameters can now be fed into very fast CMB
codes called CMBFAST [93] and CAMB [94], that compute the predicted temperature and polarization
anisotropies to better than 1% accuracy, and thus can be usedto compare with observations.

These two satellites will improve both the sensitivity, down toµK, and the resolution, down to arc
minutes, with respect to the previous COBE satellite, thanks to large numbers of microwave horns of var-
ious sizes, positioned at specific angles, and also thanks torecent advances in detector technology, with
high electron mobility transistor amplifiers (HEMTs) for frequencies below 100 GHz and bolometers for
higher frequencies. The primary advantage of HEMTs is theirease of use and speed, with a typical sen-
sitivity of 0.5 mKs1/2, while the advantage of bolometers is their tremendous sensitivity, better than 0.1
mKs1/2, see Ref. [97]. This will allow cosmologists to extract information from around 3000 multipoles!
Since most of the cosmological parameters have specific signatures in the height and position of the first
few acoustic peaks, the higher the resolution, the more peaks one is expected to see, and thus the better
the accuracy with which one will be able to measure those parameters, see Table 2.

Although the satellite probes were designed for the accurate measurement of the CMB tempera-
ture anisotropies, there are other experiments, like balloon-borne and ground interferometers [90]. Prob-



ably the most important objective of the future satellites (beyond WMAP) will be the measurement of
the CMB polarization anisotropies, discovered by DASI in November 2002 [98], and confirmed a few
months later by WMAP with greater accuracy [20], see Fig. 24.These anisotropies were predicted by
models of structure formation and indeed found at the level of microKelvin sensitivities, where the new
satellites were aiming at. The complementary information contained in the polarization anisotropies
already provides much more stringent constraints on the cosmological parameters than from the temper-
ature anisotropies alone. However, in the future, Planck and CMB pol will have much better sensitivities.
In particular, the curl-curl component of the polarizationpower spectra is nowadays the only means we
have to determine the tensor (gravitational wave) contribution to the metric perturbations responsible for
temperature anisotropies, see Fig. 30. If such a component is found, one could constraint very precisely
the model of inflation from its spectral properties, specially the tilt [91].

Fig. 30: Theoretical predictions for the four non-zero CMB temperature-polarization spectra as a function of multipole moment,

together with the expectations from Planck. From Ref. [92].

4.5 From metric perturbations to large scale structure

If inflation is responsible for the metric perturbations that gave rise to the temperature anisotropies ob-
served in the microwave background, then the primordial spectrum of density inhomogeneities induced
by the same metric perturbations should also be responsiblefor the present large scale structure [99].
This simple connection allows for more stringent tests on the inflationary paradigm for the generation
of metric perturbations, since it relates the large scales (of order the present horizon) with the smallest
scales (on galaxy scales). This provides a very large lever arm for the determination of primordial spectra
parameters like the tilt, the nature of the perturbations, whether adiabatic or isocurvature, the geometry
of the universe, as well as its matter and energy content, whether CDM, HDM or mixed CHDM.

4.51 The galaxy power spectrum

As metric perturbations enter the causal horizon during theradiation or matter era, they create density
fluctuations via gravitational attraction of the potentialwells. The density contrastδ can be deduced from
the Einstein equations in linear perturbation theory, see Eq. (166),

δk ≡
δρk
ρ

=

(

k

aH

)2 2

3
Φk =

(

k

aH

)2 2 + 2ω

5 + 3ω
Rk , (239)



where we have assumedK = 0, and used Eq. (198). From this expression one can compute thepower
spectrum, at horizon crossing, of matter density perturbations induced by inflation, see Eq. (210),

P (k) = 〈|δk|2〉 = A

(

k

aH

)n

, (240)

with n given by the scalar tilt (212),n = 1 + 2η − 6ǫ. This spectrum reduces to a Harrison-Zel’dovich
spectrum (100) in the slow-roll approximation:η, ǫ≪ 1.

Since perturbations evolve after entering the horizon, thepower spectrum will not remain con-
stant. For scales entering the horizon well after matter domination (k−1 ≫ k−1

eq ≃ 81 Mpc), the metric
perturbation has not changed significantly, so thatRk(final) = Rk(initial). Then Eq. (239) determines
the final density contrast in terms of the initial one. On smaller scales, there is a linear transfer function
T (k), which may be defined as [76]

Rk(final) = T (k)Rk(initial) . (241)

To calculate the transfer function one has to specify the initial condition with the relative abundance
of photons, neutrinos, baryons and cold dark matter long before horizon crossing. The most natural
condition is that the abundances of all particle species areuniform on comoving hypersurfaces (with
constant total energy density). This is called theadiabaticcondition, because entropy is conserved inde-
pendently for each particle speciesX, i.e. δρX = ρ̇Xδt, given a perturbation in time from a comoving
hypersurface, so

δρX
ρX + pX

=
δρY

ρY + pY
, (242)

where we have used the energy conservation equation for eachspecies,̇ρX = −3H(ρX + pX), valid to
first order in perturbations. It follows that each species ofradiation has a common density contrastδr,
and each species of matter has also a common density contrastδm, with the relationδm = 3

4δr.

Given the adiabatic condition, the transfer function is determined by the physical processes oc-
curing between horizon entry and matter domination. If the radiation behaves like a perfect fluid, its
density perturbation oscillates during this era, with decreasing amplitude. The matter density contrast
living in this background does not grow appreciably before matter domination because it has negligible
self-gravity. The transfer function is therefore given roughly by, see Eq. (103),

T (k) =

{

1 , k ≪ keq

(k/keq)
2 , k ≫ keq

(243)

The perfect fluid description of the radiation is far from being correct after horizon entry, because
roughly half of the radiation consists of neutrinos whose perturbation rapidly disappears through free
streeming. The photons are also not a perfect fluid because they diffuse significantly, for scales below
the Silk scale,k−1

S ∼ 1 Mpc. One might then consider the opposite assumption, that the radiation has
zero perturbation after horizon entry. Then the matter density perturbation evolves according to

δ̈k + 2Hδ̇k + (c2s k
2
ph − 4πGρ) δk = 0 , (244)

which corresponds to the equation of a damped harmonic oscillator. The zero-frequency oscillator defines
the Jeans wavenumber,kJ =

√

4πGρ/c2s . For k ≪ kJ , δk grows exponentially on the dynamical
timescale,τdyn = Imω−1 = (4πGρ)−1/2 = τgrav, which is the time scale for gravitational collapse.
One can also define the Jeans length,

λJ =
2π

kJ
= cs

√

π

Gρ
, (245)



which separates gravitationally stable from unstable modes. If we define the pressure response timescale
as the size of the perturbation over the sound speed,τpres ∼ λ/cs, then, if τpres > τgrav, gravitational
collapse of a perturbation can occur before pressure forcescan response to restore hydrostatic equilibrium
(this occurs forλ > λJ ). On the other hand, ifτpres < τgrav, radiation pressure prevents gravitational
collapse and there are damped acoustic oscillations (forλ < λJ ).

We will consider now the behaviour of modes within the horizon during the transition from the
radiation (c2s = 1/3) to the matter era (c2s = 0). The growing mode solution increases only by a factor of
2 between horizon entry and the epoch when matter starts to dominate, i.e.y = 1. The transfer function is
therefore again roughly given by Eq. (243). Since the radiation consists roughly half of neutrinos, which
free streem, and half of photons, which either form a perfectfluid or just diffuse, neither the perfect
fluid nor the free-streeming approximation looks very sensible. A more precise calculation is needed,
including: neutrino free streeming around the epoch of horizon entry; the diffusion of photons around
the same time, for scales below Silk scale; the diffusion of baryons along with the photons, and the
establishment after matter domination of a common matter density contrast, as the baryons fall into the
potential wells of cold dark matter. All these effects applyseparately, to first order in the perturbations, to
each Fourier component, so that a linear transfer function is produced. There are several parametrizations
in the literature, but the one which is more widely used is that of Ref. [100],

T (k) =
[

1 +
(

ak + (bk)3/2 + (ck)2
)ν]−1/ν

, ν = 1.13 , (246)

a = 6.4 (ΩMh)−1 h−1 Mpc , (247)

b = 3.0 (ΩMh)−1 h−1 Mpc , (248)

c = 1.7 (ΩMh)−1 h−1 Mpc . (249)

We see that the behaviour estimated in Eq. (243) is roughly correct, although the break atk = keq is not
at all sharp, see Fig. 31. The transfer function, which encodes the soltion to linear equations, ceases to
be valid when the density contrast becomes of order 1. After that, the highly nonlinear phenomenon of
gravitational collapse takes place, see Fig. 31.

Fig. 31: The CDM power spectrumP (k) as a function of wavenumberk, in logarithmic scale, normalized to the local abun-

dance of galaxy clusters, for an Einstein-de Sitter universe withh = 0.5. The solid (dashed) curve shows the linear (non-linear)

power spectrum. While the linear power spectrum falls off like k−3, the non-linear power-spectrum illustrates the increased

power on small scales due to non-linear effects, at the expense of the large-scale structures. From Ref. [41].



4.52 The new redshift catalogs, 2dF and Sloan Digital Sky Survey

Our view of the large-scale distribution of luminous objects in the universe has changed dramatically
during the last 25 years: from the simple pre-1975 picture ofa distribution of field and cluster galaxies,
to the discovery of the first single superstructures and voids, to the most recent results showing an almost
regular web-like network of interconnected clusters, filaments and walls, separating huge nearly empty
volumes. The increased efficiency of redshift surveys, madepossible by the development of spectro-
graphs and – specially in the last decade – by an enormous increase in multiplexing gain (i.e. the ability
to collect spectra of several galaxies at once, thanks to fibre-optic spectrographs), has allowed us not
only to docartographyof the nearby universe, but also to statistically characterize some of its properties,
see Ref. [101]. At the same time, advances in theoretical modeling of the development of structure, with
large high-resolution gravitational simulations coupledto a deeper yet limited understanding of how to
form galaxies within the dark matter halos, have provided a more realistic connection of the models to the
observable quantities [102]. Despite the large uncertainties that still exist, this has transformed the study
of cosmology and large-scale structure into a truly quantitative science, where theory and observations
can progress side by side.

I will concentrate on two of the new catalogs, which are taking data at the moment and which
have changed the field, the 2-degree-Field (2dF) Catalog andthe Sloan Digital Sky Survey (SDSS). The
advantages of multi-object fibre spectroscopy have been pushed to the extreme with the construction of
the 2dF spectrograph for the prime focus of the Anglo-Australian Telescope [42]. This instrument is
able to accommodate 400 automatically positioned fibres over a 2 degree in diameter field. This implies
a density of fibres on the sky of approximately 130 deg−2, and an optimal match to the galaxy counts
for a magnitudebJ ≃ 19.5, similar to that of previous surveys like the ESP, with the difference that
with such an area yield, the same number of redshifts as in theESP survey can be collected in about 10
exposures, or slightly more than one night of telescope timewith typical 1 hour exposures. This is the
basis of the 2dF galaxy redshift survey. Its goal is to measure redshifts for more than 250,000 galaxies
with bJ < 19.5. In addition, a faint redshift survey of 10,000 galaxies brighter thanR = 21 will be done
over selected fields within the two main strips of the South and North Galactic Caps. The survey has
now finished, with a quarter of a million redshifts. The final result can be seen in Ref. [42].

The most ambitious and comprehensive galaxy survey currently in progress is without any doubt
the Sloan Digital Sky Survey [43]. The aim of the project is, first of all, to observe photometrically the
whole Northern Galactic Cap, 30◦ away from the galactic plane (about104 deg2) in five bands, at limiting
magnitudes from 20.8 to 23.3. The expectation is to detect around 50 million galaxies and around108

star-like sources. This has already led to the discovery of several high-redshift (z > 4) quasars, including
the highest-redshift quasar known, atz = 5.0, see Ref. [43]. Using two fibre spectrographs carrying 320
fibres each, the spectroscopic part of the survey will then collect spectra from about106 galaxies with
r′ < 18 and105 AGNs withr′ < 19. It will also select a sample of about105 red luminous galaxies with
r′ < 19.5, which will be observed spectroscopically, providing a nearly volume-limited sample of early-
type galaxies with a median redshift ofz ≃ 0.5, that will be extremely valuable to study the evolution of
clustering. The data that is coming from these catalogs is sooutstanding that already cosmologists are
using them for the determination of the cosmological parameters of the standard model of cosmology.
The main outcome of these catalogs is the linear power spectrum of matter fluctuations that give rise to
galaxies, and clusters of galaxies. It covers from the largescales of order Gigaparsecs, the realm of the
unvirialised superclusters, to the small scales of hundreds of kiloparsecs, where the Lyman-α systems
can help reconstruct the linear power spectrum, since they are less sensitive to the nonlinear growth of
perturbations.

As often happens in particle physics, not always are observations from a single experiment suffi-
cient to isolate and determine the precise value of the parameters of the standard model. We mentioned
in the previous Section that some of the cosmological parameters created similar effects in the tem-
perature anisotropies of the microwave background. We say that these parameters aredegeneratewith



respect to the observations. However, often one finds combinations of various experiments/observations
which break the degeneracy, for example by depending on a different combination of parameters. This is
precisely the case with the cosmological parameters, as measured by a combination of large-scale struc-
ture observations, microwave background anisotropies, Supernovae Ia observations and Hubble Space
Telescope measurements. It is expected that in the near future we will be able to determine the param-
eters of the standard cosmological model with great precision from a combination of several different
experiments.

5. CONCLUSION

In the last five years we have seen a true revolution in the quality and quantity of cosmological data
that has allowed cosmologists to determine most of the cosmological parameters with a few percent
accuracy and thus fix a Standard Model of Cosmology. The art ofmeasuring the cosmos has developed
so rapidly and efficiently that one may be temped of renaming this science as Cosmonomy, leaving the
word Cosmology for the theories of the Early Universe. In summary, we now know that the stuff we are
made of− baryons− constitutes just about 4% of all the matter/energy in the Universe, while 25% is
dark matter− perhaps a new particle species related to theories beyond the Standard Model of Particle
Physics−, and the largest fraction, 70%, some form of diffuse tensionalso known as dark energy−
perhaps a cosmological constant. The rest, about 1%, could be in the form of massive neutrinos.

Nowadays, a host of observations− from CMB anisotropies and large scale structure to the age
and the acceleration of the universe− all converge towards these values, see Fig. 25. Fortunately, we
will have, within this decade, new satellite experiments like Planck, CMBpol, SNAP as well as deep
galaxy catalogs from Earth, to complement and precisely pindown the values of the Standard Model
cosmological parameters below the percent level, see Table1.

All these observations would not make much sense without theencompassing picture of the infla-
tionary paradigm that determines the homogeneous and isotropic background on top of which it imprints
an approximately scale invariant gaussian spectrum of adiabatic fluctuations. At present all observations
are consistent with the predictions of inflation and hopefully in the near future we may have information,
from the polarization anisotropies of the microwave background, about the scale of inflation, and thus
about the physics responsible for the early universe dynamics.
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