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Introduction 
 
 
 This module was written with those teachers and students in mind who are engaged in 
trigonometric ideas in courses ranging from geometry and second-year algebra to trigonometry 
and pre-calculus.  The lessons contain historical and cultural context, as well as developing 
traditional concepts and skills.  They are to be used alongside the class’ regular text.   
 

For the convenience of busy teachers, individual lessons are in reproducible form for the 
classroom and are accompanied by a teacher guide with a description of the unit, prerequisites, 
materials, and teacher notes.  Each lesson is generally independent of the others while respecting 
the standard sequencing of trigonometry topics.  The teacher guide suggests how these historical 
lessons could introduce, replace, complement, or extend the text lessons. 
  

An introduction to angle ties Euclid’s linear concept to circular arc measure, explains the 
transition from degree to radian measure, and raises the dynamic definition of angle as rotation.  
To calculate positions of heavenly bodies, the astronomer Ptolemy (c. 85-145 AD) created tables 
of circular chord lengths, which the students will compare to sine values.  Indirect measurement 
of height and solar angles by shadow math, with hands-on activities, develops the tangent ratio.  
Students will formulate a basic tangent table.   

 
After defining sine, cosine, and tangent, students can proceed from circle geometry to 

trace through Ptolemy’s calculation of his chord table (with some beautiful pentagon properties 
along the way).  In the process, they will derive the identities for sine and cosine of the sum and 
difference of angles, and the sine of a half angle.  Then the students can develop the Law of 
Sines from an inscribed triangle according to Brahmagupta (628), the Law of Cosines from 
Euclid’s Elements, and Heron’s Formula from a theorem of Brahmagupta.   

 
Historical determinations of astronomical distances and sizes, as well as solving right and 

general triangles, introduce some authentic purposes why past cultures studied trigonometric 
ratios and the Laws of Sines and Cosines.  Likewise, the unit on trigonometric identities 
establishes the historical importance of elementary identities, sum-to-product, product-to-sum, 
double angle, half angle, and other identities, including a glimpse at how the Hindu astronomers 
made a sine table.   

 
The final lesson, on spherical trigonometry, is extensive because high school texts usually 

omit it.  Its historical development, the connections between plane and spherical systems, 
essential formulas, proofs, and exercises are rounded out with the intriguing problem of qibla (in 
what direction is Mecca).   

 
The very last section, for both reference and reading enjoyment, contains brief 

biographies and quotations of key mathematicians mentioned in various places throughout the 
book; derivation of terminology (such as function names); a timeline of important developments 
in the history of trigonometry; and a bibliography of print and on-line materials.   

 

 4 



A guiding principle in creating these historical trigonometry lessons was to forego merely 
repeating what could be found in the usual classroom text.  Also, treatment of trigonometry was 
not intended to be comprehensive.  Navigation and surveying for instance - areas where 
trigonometry has vital application - are only touched upon.  They are complete sciences in 
themselves whose literature is readily accessible to both teacher and student.  .  Lastly, in order 
to maintain the trigonometry focus, many threads of intriguing context, such as the events, 
politics, art, and personal lives of the famous and everyman of the times, could not be developed 
more fully.    

 

Rationale 
 
 This set of lessons grew from a desire to enhance the teaching and learning of 
trigonometry by connecting it to people who developed it, and when, where, and why they did 
so.  Further motivations for the historical approach were to clarify the beginnings of 
trigonometry in the mathematics needed for astronomy, to credit people in other cultures and in 
the past for their solutions of important mathematical problems, and to trace the development of 
the trigonometric functions and related terminology.  Astronomy, studying the heavens, earthly 
measuring, surveying, navigation, and formal abstraction (developing generalizations) will 
benefit students looking toward space age careers as they improve their understanding of the 
earth and its place in the universe.  
 

All students need to see how mathematics is a human activity not only in its application 
but in its making, to trace through how it is used as well as how people reason in order to arrive 
at its validity.  In general, a historical approach to trigonometry can excite inquiry into 
mathematics and history as part of the process of discovery and integrated understanding. 
  
 Principles and Standards 2000 published by the National Council of Teachers of 
Mathematics underscores the wide range of career opportunities provided by a solid foundation 
in trigonometry.   In particular, “Carpenters apply the principles of trigonometry in their work, as 
do surveyors, navigators, and architects.” (p. 288) Furthermore, in its vision for school 
mathematics, NCTM states that our rapidly changing world needs more than ever “Mathematics 
as a part of cultural heritage.  Mathematics is one of the greatest cultural and intellectual 
achievements of humankind, and citizens should develop an appreciation and understanding of 
that achievement.”  
 

The Standards for Grades 9-12 specifically addressed by this module are: 
 

Algebra Standard:  (p. 296) 
• “Understand patterns, relations, and functions”, including the class of periodic functions.” 
 

Geometry Standard:  (p. 308) 
• “Analyze characteristics and properties of two- and three-dimensional geometric shapes and 

develop mathematical arguments about geometric relationships.”  Specifically “use 
trigonometric relationships to determine lengths and angle measures.” 

• “Use ... other coordinate systems, such as ... spherical.” 
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The description of the Geometry Standard includes: 
• “Properties of ... trigonometric relationships ... give students additional resources to solve 

mathematical problems.”  (p. 309) 
• “Right-triangle trigonometry is useful in solving a range of practical problems.”  (p. 313) 
• An example of the problem positioning lights for maximum illumination “draws on students’ 

knowledge of geometric and trigonometric relationships.”  (p. 317) 
 

Measurement Standard:  (p. 320) 
• “Understand ... units, systems, and processes of measurement.” 
• “Apply appropriate techniques, tools, and formulas to determine measurements”, including 

“understand and use formulas for the area.” 
 
The description of the Measurement Standard includes: 
• Students should extend their “facility with derived measures and indirect measurement.” 

 
Problem Solving Standard:  (p. 334) 

• “Build new mathematical knowledge through problem solving.” 
• “Solve problems that arise in mathematics and in other contexts.” 
• “Apply and adapt a variety of appropriate strategies to solve problems.” 
• “Monitor and reflect on the process of mathematical problem solving.” 
 

Reasoning and Proof Standard:  (p. 342) 
• “Recognize reasoning and proof as fundamental aspects of mathematics.” 
• “Develop and evaluate mathematical arguments and proofs.” 
 

Connections Standard:  (p. 354) 
• “Recognize and use connections among mathematical ideas.” 
• “Understand how mathematical ideas interconnect and build on one another to produce a 

coherent whole.” 
• “Recognize and apply mathematics in contexts outside of mathematics.” 
 

Representation Standard:  (p. 360) 
The description of the Representation Standard includes: 
• Students “should recognize, for example, that phenomena with periodic features often are 

best modeled by trigonometric functions.”  
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Historical and Cultural Overview 
 
 Trigonometry began outdoors in the open air, over two thousand years ago, when 
scholars studied the stars and planets moving across the night sky, and the shadows’ changing 
lengths on sunny days.  Contrary to the flavor of modern textbook exercises, trigonometry did 
not start with the right triangle or angles of circular functions.  Sine and cosine emerged from 
astronomers’ search for pattern in movement and location of heavenly bodies.  Astronomy 
motivated trigonometry until well into the fifteenth century.  On the scale of an 8 a.m. to 3 p.m. 
school day, this was at 2 p.m.  In our metaphor, the first published work-naming trigonometry 
appeared at 2:30.  Tangent and cotangent meanwhile developed in calculating heights of objects 
from shadow lengths.  Secant and cosecant evolved in navigation; astrolabe readings depended 
on shadows falling across scales.  The six trigonometric functions in some form occurred 
together throughout the history of mathematics before modern terminology, decimal notation, 
and association of functions with angles. 
 
 What cultural forces overall drove trigonometry?  Shadow lengths confirmed solstices 
and agricultural seasons.  People surveyed the land, made maps, and navigated for travel and 
trade.  Various cultures scheduled religious rites by eclipses and the sun’s position.  Heads of 
state desired heavenly auspices before ventures.  In Islam, the moon fixes the calendar; the sun 
tells the fasting period and the five times and direction to face for daily prayer.  Those who lived 
before us also responded to the large questions about the nature of the cosmos and our place in it. 
 
 The Greeks.   The early Greeks produced theorems equivalent to modern trigonometric 
formulas.  Euclid’s proof of a form of the law of cosines (c. 300 BCE) resembled that of the 
Pythagorean Theorem.  Theorems on chord lengths relate to the modern law of sines.  
Archimedes’ (287-212 BCE) theorem on the broken chord relates to the sine of a sum or 
difference.  In astronomy the Greeks, including Eudoxus (c. 408-335 BCE), had used Babylonian 
data.  To them, the five planets, moon, sun, and stars moved in spheres centered on the fixed 
Earth.  Hipparchus (c. 180-125 BCE) founded trigonometry, publishing 12 books with tables; 
given a circular arc, they find a subtended chord (that is, a sine) length.  The European idea of 
sine as a ratio in a right triangle came in the sixteenth century.  Hipparchus calculated the Earth’s 
radius, the distance to heavenly bodies, and the sun’s and moon’s diameters.  Menelaus of 
Alexandria (c. 100 CE) wrote the earliest treatises on spherical trigonometry, which developed 
along side of plane trigonometry.   
 

Around 150 DE, Ptolemy produced his Mathematical Synthesis, which the Arab scholars 
centuries later would call Almagiste or “the greatest.”   From Ptolemy’s time, it would serve as 
the definitive trigonometry for the next millennium.  Ptolemy computed chord tables for the sine 
of (in modern terms) angles from ¼ o to 90o in ¼ o steps on a circle of radius 60 and, in terms of 
chords, knew sin2 A + cos2 A = 1, the sine of a sum or difference, the half-angle formula for sine, 
and the law of sines.  In the seventeenth century the Ptolemaic model of the universe would be 
burdened with 77 circles on circles of cycles to match observations.  The quest for a better model 
would provide much driving force for trigonometry; it would be taken up by Copernicus and 
fulfilled by Kepler in 1609.  The Greek intellectual experience dimmed with the Roman conquest 
and the burning of the Alexandria library. 
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 India.  Trigonometry was one of the major contributions of Hindu mathematics.   
Mathematicians were “expert on the stars.”  Astronomical treatises had detailed tables for finding 
angular distances between stars and incorporated poetic verses and aphorisms, all in Sanskrit.  
Hindu trigonometry was influenced by Greek methods of calculation, but not by the Greeks’ 
devotion to proof.  It contained sine, cosine, versine (1 – cosine), the sine of a half angle, 
methods of solving spherical and plane triangles, and division of angle degrees into minutes and 
seconds.  
 
 About 500 CE Aryabhata gave today’s sine concept, in tables of half chords, which were 
a short cut over Ptolemy’s chords.  Still, the sine was not a ratio but rather a segment length.  For 
greater decimal precision, Aryabhata chose a circle radius of 3438 units.  By the end of the sixth 
century, work in shadow reckoning displayed today’s six trigonometric ratios.  In 1150 Bhaskara 
gave a system for finding the sine of any angle.  Pushing for accurate detailed tables, the Hindus 
produced power series expansions for sine, cosine, and inverse tangent, which predated the 
European series by two to three centuries.  To predict eclipses, they “froze” trigonometric 
functions in a manner suggesting calculus.  
 
 The Hindu trigonometry impacted Chinese mathematics, which sought numerical patterns 
in eclipses, occultation’s, conjunctions, and recurring events.  Hindu astronomers working for the 
Emperor brought reference works such as chord tables and the Surya Siddhanta (c. 300-400).  
These influenced the monk I-Hsing (c. 724), the greatest Chinese astronomer of the time, to 
make tangent tables, giving formal status to shadow reckoning.  
 
 The Islamic World.  In the eighth century, the Arabs discovered Hindu trigonometry.  
They preserved, translated, and added to it topics in arithmetic, algebra, and geometry.  The 
Arabs were the primary transmitters of mathematics to Europe.  Trigonometry was second only 
to algebra as their favorite mathematics, and it remained the servant of astronomy.  About 860, 
the Arabs produced a table of shadows and created tangent and cotangent ratios.  Adding new 
formulas and functions, they synthesized Greek, Hindu, and their own discoveries into a true 
trigonometry.  Al-Battani (c. 850-929) made sine and tangent tables and a formula for the sun’s 
height.  The greatest Arab mathematician of the tenth century, Abu-l-Wafa (940-998) placed 
trigonometry on a unit circle in terms of arcs.  The eleventh century astronomer Al-Biruni wrote 
a treatise on Hindu shadow reckoning and defined sin, cos, tan, cot, sec, and csc by shadows.  
Islamic scholars used all six quantities from the thirteenth century on.  Nasir al-Din al-Tusi 
(1201-1274) first treated trigonometry independently from astronomy.  The Islamic legacy in 
trigonometry consisted of the six functions, the law of sines and other identities, the formation of 
trigonometric tables by interpolation, and applications to optics and surveying outside of 
astronomy. 
 
 Europe.  By the twelfth century the translation of Greek, Hindu, and Islamic 
mathematics by Latin scholars gave Europe an appetite for the trigonometry of Islamic 
astronomy.  Fibonacci’s Practica Geometriae (1220) gathered trigonometry from Islamic works.  
European trigonometry truly emerged in 1533 with the publication of De Triangulis by 
Regiomontanus (1436-1476), Europe’s first systematic treatment of spherical and plane 
trigonometry.  This book heralded a new age of mathematicians and astronomers, focusing in 
sixteenth century Poland and Germany.  Constructing tables for sine and versine was laborious 
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but demanded by astronomers patching up the Ptolemaic model of planetary motion.  Copernicus 
(1473-1543) assembled all the trigonometry he needed for astronomy in De revolutionibus (On 
the Revolutions of the Heavenly Spheres) (1545), which asserted that the Earth and planets 
circled the sun.  His student Rheticus (1514-1576) was the first to define trigonometric quantities 
as ratios of sides of right triangles instead of circular arcs.  Rheticus’ own publication caused 
trigonometry to come of age in Europe.  His sine and cosine tables took the circle radius to be 
10,000,000, so that he could achieve seven-place accuracy.  He broke each angle into 10-second 
steps, so that his table was 90 times as dense as Ptolemy’s.  Why would anyone want to do this?  
The scientific community was assisting or resisting the cultural paradigm shift caused by the 
Copernican theory.  The practical demands of surveying, navigation, and calendar making 
required ever more accurate calculations.  Tables to 15 decimal places were achieved by 1700 by 
hand and without modern decimal notation. 
 
 The Marriage of Trigonometry and Algebra.  Three years after Rheticus died, the first 
book was published in western Europe having methods of solving triangles with all six 
trigonometric functions, by Viète (1540-1603), the founder of today’s algebra.  Viète approached 
trigonometry from algebra and functions.  Based on work by Regiomontanus (with whom he 
agreed that trigonometry should be its own study) and Rheticus, Viète raised trigonometry to 
greater abstraction and scope.   
 

Blending trigonometry with algebra was the final step in developing the analysis through 
the study of functions.  Recurrence in events from heartbeats to seasons created the notion of 
periodicity and trigonometry took up circular or periodic functions.  Planetary orbits, pendulums, 
sound, light, and the vibration of a violin string were all explored in the sixteenth and 
seventeenth centuries.  As Whitehead said, “Thus trigonometry became completely abstract; and 
in thus becoming abstract, it became useful.  It illuminated the underlying analogy between sets 
of utterly diverse physical phenomena.” 
   
 Vast collections of trigonometric identities were coming into use all over Europe.  
Trigonometric functions became more important than numerical computation.  Mathematicians 
reorganized what was known and made texts available.  An identity such as 2 cos x cos y =  
cos(x+ y) + cos(x – y) inspired the technique of “prostaphaeresis,” and multiplying trigonometric 
values could be replaced with easier addition.  Islamic scholars knew the formula about 1000 
CE, and the Europeans developed additional formulas.  Napier (1550-1617) knew trigonometric 
methods, which may have influenced him to create logarithm tables for changing general 
multiplication into addition. 
 
 Analysis of Trigonometric Functions.  The first sine graph, a half arch by Roberval 
(1635), signified trigonometry’s trend away from computation to a function approach.  The 
brothers Jakob (1654-1705) and Johann (1667-1748) Bernoulli extended trigonometry into 
functions of complex numbers.  The true founder of analytic trigonometry was Euler (1707-
1783).  In his Introductio (1748), sine was no longer a chord but a numeric value expressed as a 
ratio, the ordinate on a unit circle, or a sum of an infinite series.  This marked the formal birth of 
the circular function concept in which sine and cosine are periodic, although Euler had used sine 
and cosine functions somewhat earlier in papers giving solutions to differential equations.  Euler 
developed the identity eix = cos x + i sin x (where e is the base for natural logarithms,) which 
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mathematics historian Ronald Calinger called “the cardinal formula of analytical trigonometry.”  
A result is eπi + 1 = 0, one of the most beautiful theorems in all of mathematics.  The Introductio 
gave us most of our modern notations.  Euler’s abbreviations sin, cos, tang, cot, sec, and cosec 
became standard.  Euler brought together zero, unity, π, trigonometry, complex numbers, and 
infinite series. 
 
 Trigonometry explained why the compass and straightedge of the ancient Greeks could 
not trisect a general angle.  Another challenge was whether those tools could construct a regular 
polygon with 17 sides.  In 1796, eighteen-year-old Gauss proved it could be done.  His proof 
involved complex numbers and trigonometry. 
 
 The Grand Design, or Back to the Universe.  Studies in the physics of heat by Fourier 
(1768-1830) triggered soul-searching in the mathematics of the late nineteenth and early 
twentieth centuries.  Fourier saw heat as the fundamental property of the universe and sought a 
model for heat diffusion in objects having specific shape.  In The Analytic Theory of Heat 
(1822), his great theorem showed that any function whatsoever could be written as an infinite 
series adding sine and cosine of multiple angles.    In challenging themselves to bring logical 
rigor and abstract generality to Fourier’s work, mathematicians created new areas in function 
theory and the foundations of calculus.  Among these mathematicians were Dirichlet (1805-
1859), one of the originator’s of today’s function definition; Riemann (1816-1866) and Lebesgue 
(1875-1941), who clarified the concept of integration; and Cantor (1845-1918), who gave 
meaning to the notion of infinite sets.  In the process of giving precise proofs to results about 
Fourier series, the deep roots of mathematics were examined and a profound synthesis brought 
forth.  The physics of heat, expressed in trigonometric terms, opened mathematics to generalized 
functions, sets, and the infinite.  These in turn yielded applications the ancients could not 
envision such as quantum mechanics and engineering electrical circuits.  
 
 Mathematicians now living are still writing chapters in the history of trigonometry.  
Perhaps a young person whom you know, perhaps even yourself, will add to it.  Girls in the time 
of Sofia Kovalevskaya (1850-1891) were discouraged from studying mathematics.  To 
understand a physics book, she built the needed trigonometry on her own.  She eventually 
became one of the greatest female mathematicians.  
 
 The UNESCO Courier devoted its November 1989 magazine to a tour of mathematics in 
different times and cultures:  “Mathematics forms part of our cultural heritage and history.”  And 
an article in the American Scientist magazine of July-August 1996 showed that the history of 
discovery teaches us unity, “in the ceaseless borrowing connecting diverse traditions and 
disciplines. ...  However they may differ, the multitudinous projects of science share in and 
emerge from a common history.”   
 

To learn and teach trigonometry from a historical approach is to enter an exploration of 
how we as mathematics inquirers - and humankind - have arrived at where and as who we are 
today.  
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The Concept of Angle 
Degree and Radian Measures 

Teacher Notes 
 
Description of Unit:  The material in this unit is designed mainly for teachers. The commentary 
examines the historical development of angular measurement and how it is related to the chords 
of Ptolemy and explains how Cotes came up with radian measure.  Most of the information in 
this unit is not found in standard high school texts. Since many introductions to trigonometry 
start with the radian measure of angles, a teacher could integrate material from this unit at that 
time. The topic of why there are 360 degrees in a circle is presented as a possible teacher script 
and is written in italics. 
 
 
Prerequisites:  Much of the unit requires only the knowledge of basic geometric terms. 
Although references are made to infinite series, derivatives of sine and cosine, and eiπ, material 
beyond the background of the students may be easily omitted. 
 
 
Materials:  Problems converting radians to degrees and vice versa as well as the relationship of 
angles measured in radians to arc lengths and circle radii are found in standard textbooks. 
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The Concept of Angle 
Degree and Radian Measures 

Student Pages 
 
 Hunters, stargazers, sailors, builders, farmers, and many others must surely have used 
angles informally long before any careful attempts were made to define the concept of angle.  
Over the centuries, as people began to treat angles more systematically, units of angular measure 
were introduced, instruments for measuring angles were made, and eventually the study of 
angles became part of geometry. 
 
 Euclid’s Elements, which contain a systematic treatment of much of the plane geometry 
of his time, attempts to define the concept of angle and related notions in Book 1 as follows: 
 
  Definition 8.  A plane angle is the inclination to one another of two 
  lines in a plane, which meet one another and do not lie in a straight 
  line. 
 
  Definition 9.  And when the lines containing the angles are straight,   
  the angle is called rectilinear.  
  
  Definition 10.  When a straight line meeting another straight line    
  makes the adjacent angles equal to one another, each of the angles is   
  right and the first straight line is called a perpendicular to the second   
  line. 
 
  Definition 11.  An obtuse angle is greater than a right angle. 
 
  Definition 12.  An acute angle is less than a right angle. 
 
 
 Euclid’s statements may be effective at some intuitive level, but they certainly raise 
questions.  Clearly Euclid associates angles with intersecting lines (figure 1), but what is meant 
by  “the inclination?” 
 
        
                                 figure 1 
                                          
 
 
Are the angles represented by figure 2 the same as the angles in figure 1, or are they in some 
sense smaller, since they are only a part of figure 1? 
 
 
                                                              figure 2 
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Proclus, who taught in Athens some seven centuries after Euclid, commented extensively 
on Euclid’s definitions, but he did not fundamentally clarify them.  Attempts to give clear 
definitions of mathematical concepts and terms were an important part of the formalization 
process.  Indeed, Euclid’s Elements begins with definitions of basic concepts such as point and 
line.  It is now realized that any attempt to define all terms, which may once have seemed an 
appealing goal, is doomed to failure.  Despite the inherent difficulties, we often still try to define 
basic terms and concepts in mathematics, and Euclid’s attempts in this area do seem to have 
some intuitive value in describing what he had in mind. 
 
 A second ancient view of angles is associated with the lengths of arcs on circles.  
Specifically, an angle, regarded as a central angle in a circle, is determined by, and can be 
defined by, the arc length that it subtends on the circle.  Of course, this arc length depends on the 
size of the circle as well as on the central angle, a fact that caused complications for those who 
calculated trigonometric tables since they always had to specify the size of the circle being used.  
Ptolemy is a most prominent example.   
 
 Using lengths of circular arcs to define angles seems to fit naturally with the system of 
degrees, minutes, and seconds, still widely used today to measure angles.  This system of units, 
whose origin is unknown, was used in ancient Babylonia approximately 4000 years ago.  
Speculation about the origins of this system of angular measure often centers on the fact that 360 
is a very convenient number from a practical view. 
 
 Among the reasons given for this division of a circle into 360 parts are that 360 has many 
divisors, that it is the closest “round” number to the number of days in the year, and that the 
Babylonians used a base-60 place value system. Another reason is given by Otto Neugebauer:   
“In early Sumerian times there existed a large distance unit, a sort of Babylonian mile, equal to 
about seven of our miles.  Since the Babylonian mile was used for measuring longer distances, it 
was natural that it should also become a time unit, namely the time required to travel a 
Babylonian mile.  Later, some time in the first millennium B.C., when Babylonian astronomy 
reached the stage in which systematic records of celestial phenomena where kept, the Babylonian 
time-mile was adopted for measuring spans of time.  Since a complete day was found to be equal 
to 12 time-miles, and one complete day is equivalent to one revolution of the sky, a complete 
circuit was divided into 12 equal parts.  But, for convenience, the Babylonian mile had been 
subdivided into 30 equal parts.  We thus arrive at (12)(30) = 360 equal parts in a complete 
circuit.” (Newsom & Eves, Introduction to College Mathematics, 2nd edition) 
 
 Eli Maor in Trigonometric Delights states that “the word degree originated with the 
Greeks.  According to the historian of mathematics David Eugene Smith, they used the word 
µοιρα  (moira), which the Arabs translated into daaraja (akin to the Hebrew dar’ggah, a step on 
a ladder or scale); this in turn became the Latin de gradus, from which came the word degree.” 
The Greeks divided the degree into sixty “first parts” and each of these into sixty “second parts”.   
In Latin this translates to “partes minutae primae” (first small parts) and “partes minutae 
secunda” (second small parts).  Thus occurs our English division of degrees into minutes and 
seconds.  By the fourteenth century the word “degree” was prevalent enough for Chaucer to 
write in The Canterbury Tales “the yonge sonne that in the Ram is foure degrees vp ronne.”  
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 For many centuries, the notion of angle as an arc of a circle to be measured in degrees 
was universally accepted and seems to have coexisted with Euclid’s definition. For astronomy 
and navigation, Ptolemy‘s Almagest, which uses degrees, was the paradigm, a role-played in 
theoretical geometry by Euclid’s Elements. 
 
 The question of what an angle really is, or, more precisely, what unit of measure should 
be used for angle measure was raised again by Roger Cotes (1682-1716) in a 1714 paper entitled 
Logometria.  This paper, the only one Cotes published in his short lifetime, was nominally about 
logarithms but ranged broadly over many related topics. In the preface to Part II of Logometria, 
Cotes remarked on “that Harmony of Measures, which is so strong that I propose a single 
notation to serve to designate measures, whether of ratios [logarithms] or of angles.” Then he 
considered measures of angles, thus revisiting a topic, which seems not to have been addressed 
explicitly for some two millennia. Cotes reasoned that the arc of a circle contained between the 
sides of an angle would be an obvious candidate for the measure of an angle, were it not 
dependent on the size of the circle.  For example, looking at figure 3, arc AD is larger than arc 
BC, even though both could be used to measure the same angle.   
 
        
          A  
              b   

 
                                               figure 3 
                                                                    cc        
      

         B 
  
   

O 

 
 
Cotes also realized that the differenc
measured angles not just by the size of
by the radius of the circle. For example
AD is three times as long as arc BC, so 
 

length o
radiu

 
Under this system an angle of measure
of the circle. The number of degrees in 
Cotes’ system of angle measure is now
that James Thomson, brother of Willia
the radian in his private papers.  He 
Queen’s College in Belfast, Ireland, in
terms “rad” and “radial.” 
 
 When an arc length equals the 
radian.  It’s that simple.  The word radi
for degree is a raised symbol °, so is the
a radian as the length of the arc on the u
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        C 

e in the size of the circles could be neutralized if he 
 their circular arcs but also by the size of the arc divided 
, in figure 3, if OD is three times as large as OC, then arc 
that  

f arc length of arc
s radius

AD BC
OD OC

=  

 1 is an angle for which the circular arc equals the radius 
this angle is 180/π, which Cotes approximated as 57.295. 
 called radian measure. However, It was not until 1871 

m Thomson (Lord Kelvin), formally named and defined 
first used the unit publicly in a final exam he gave at 
 1873.  Thomson and others had earlier considered the 

radius, its central angle is defined as having measure 1 
an is an abbreviation for radius-angle.  Just as the symbol 
 symbol for radian a raised R.  Some people also refer to 
nit circle subtended by an angle of 1R. 
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 This turned out to be a very useful unit for theoretical work and today it is universally 
used for such purposes in mathematics and physics even though for more mundane applications 
degree measure remains the favorite. When no angle measure is specified, radians are understood 
to be the unit desired. 
 
 It is only when radians are used as the unit of angular measure that the derivative of the 
sine is the cosine, and that the derivative of the cosine is the negative sine. When graphing an 
equation such as , it is universally assumed that x is given in radian measure.  Only 

when the angle x is measured in radians is it true that 

xxy sin+=

...
!7!5!3

753

+−+−=
xxxxxsin or that  

cos x+ isin x = eix.  These results were discovered and stated, in a somewhat different form, long 
before the radian was invented.  The sine series was known in India by the early fifteenth 
century, and many other remarkable relationships involving trigonometric and exponential 
functions and their inverses were discovered in the following three centuries.  Euler, in his 
Introductio in analysin infinitorum presented these results, including many important new ones, 
in a systematic treatment in 1748.    
 
 Angles have also been measured in other units.  The United States Army used the mil, 
originally introduced by the Swiss in 1864, in 1900 as an angle that subtends one yard at a 
thousand yards.  A “true mil” is the angle subtended at the center of a circle by an arc equal in 
length to 0.001 of the radius.  The gradian is a metric measure of angles.  There are 100 gradians 
in a right angle.  Fractional parts are computed decimally.  This measurement was also used by 
military artillery and by civil engineers building railroads (banking of curves). On many 
nongraphing scientific calculators there is still a DGR button for degree, gradian, radian. 
 
 The question of how best to define an angle is still alive today.  In the 1960s, the National 
Council of Teachers of Mathematics endorsed defining an angle as “the union of two rays with a 
common endpoint.”  This is essentially a reworked version of Euclid’s definition.  It was widely 
adopted in U.S. geometry textbooks, but it left blurred the same points as Euclid’s old definition.  
For example, according to this definition the geometric shape in figure 4 qualifies as an angle, 
but when we ask how large the angle is (what its “measure” is) the confusion emerges.  Is it 90°, 
270°, or something else, such as 450°? 
 
 
 
     figure 4 
 
 
 
 In the meantime, the view of angles as associated with circular arcs has evolved to 
identify angles with rotations. Angles (read: rotations) are considered positive if they are 
counterclockwise and negative if clockwise.  This point of view was used in trigonometry classes 
even as the NCTM definition was used in geometry classes in the same schools.  From this point 
of view, figure 4 does not define an angle at all, since it does not describe a rotation.  To describe 
an angle with a picture, it is necessary to supply curved arrows or other visual cues to describe 
the rotation completely. 
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The Beginnings of Trigonometry: 
Sine Values Found in Ptolemy’s Table 

Teacher Notes 
 

Description of Unit:  In the Greek model of the universe, the heavenly bodies made circular 
orbits around the fixed Earth.  After Hipparchus, the astronomer Ptolemy compiled numeric 
tables relating central angles to their chords.  In this unit, a student handout provides exercises so 
that students will apply the sine ratio to a central angle and its chord.  They will examine how 
accurate Ptolemy’s chord values are.  They will derive a formula expressing a chord in terms of 
sine and understand why Ptolemy’s table is said to involve sine.  Before using sine, however, 
students will look up a central angle’s chord in Ptolemy’s table and change the chord from base 
60 to base 10.  Students will then see How Ptolemy’s Table Helped the Greeks Solve Triangles, 
that is,  why the central angle-chord method helps evaluate unknown parts of any triangle 
whatsoever.  At the end of the unit are two Extension Exercises, problems for inquiry, challenge, 
and enjoyment, i.e. extra credit or projects; their solutions are not provided here. 
 
 Teacher Notes at the end of the unit more detailed background for the teacher, tidbits, 
hints, and solutions and answers to the exercises.   
 
 Throughout this unit, the primary purpose is to practice applying sine and to develop 
mathematical concepts and skills.   A later section in this module, on the Development of 
Ptolemy’s Table, is suitable as a project for advanced students who would be interested in 
recreating Ptolemy’s geometric steps deriving sin ½ o. 
 
Prerequisites:  Before starting this unit, students should have some practice with sin, cos, tan, 
sec, csc, and cot for right triangles from the textbook.  They may need reminding on circle 
geometry: chord, central angle, inscribed angle, inscribed (right) triangle.  A teacher note, rather 
scripted, reviews the base-10 system and then explains the base-60 system. 
 
Materials:  Calculator. 
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The Beginnings of Trigonometry: 
Sine Values Found in Ptolemy’s Table 

Student Pages 
 
 The early Greeks thought that Earth was the unmoving center of the universe, as recorded 
by Eudoxus (408-335 BCE).  The stars were fastened to an immense crystal sphere, which the 
Greeks considered to be the perfect shape.  The Sun, the Moon, and the five visible planets 
(Mercury, Venus, Mars, Jupiter, and Saturn) also were attached to spheres.  All the heavenly 
bodies moved in great circles around the Earth.   
 

Trying to understand this, Hipparchus (180-125 BCE), one of the greatest astronomers of 
antiquity, created the mathematics, which eventually became trigonometry.  In his work he dealt 
with triangles that were inscribed in circles.  Because he was often dealing with triangles on the 
heavenly sphere, he developed spherical trigonometry at the same time as he was developing 
plane trigonometry.  A basic problem was to evaluate the three angles and three sides of the 
inscribed triangle.  The solution involved this: given a central angle BOC, find the length of the 
intercepted chord BC. 
 

 

 
 
 
 
 
 
 
 
 

 
 
To do that, Hipparchus made tables of numbers where he could look up the chord for an 

angle.  The tables evolved into what we know today as the sine relationship between an acute 
angle and two sides of a 
right triangle.  Today’s 
definition of sine is: For an 
acute angle of a right 
triangle, the sine is the ratio 
of the length of the side 
opposite the angle to the 
length of the hypotenuse.  
This was first written by 
Rheticus (1514-1574). 

 

 

 sin A = 
c
a  
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Around 150 CE, the astronomer Ptolemy extended the work of Hipparchus in an 
astronomical work called the Mathematical Collection.  Arab scholars who studied this work 
centuries later called it Almagest, meaning The Greatest.  The first chapter of the Almagest  
discussed Ptolemy’s version of trigonometry.  Below is part of a copy of Ptolemy’s table of 
chords.  It is in the base-60 system, which was the standard at that time.  The base-60 system will 
be explained during exercises assigned below.  The source of the table is Trigonometric Delights 
by Eli Maor.  The left side of the table is written in the original Greek, with the numbers in base-
60, while the right side is the translation into Indo-Arabic numerals, though still in that base. 
Ptolemy followed the custom of using a circle whose radius was 60 units.  He calculated chords 
for arcs from ½ o to 180o in steps of ½ o.  The sixtieths column was for interpolating, that is 
finding chords for angles in between the steps of ½ o.  Thus, for example, the table tells us that 
the chord subtended by an arc of 4º in a circle of radius 60 units is 4;11, 16, which means 4 units 
plus 11/60 of a unit plus 16/602 = 16/3600 of a unit.  In the decimal system, that amounts to 
4.18778 units. 

 
 

On the next page, there is a more complete version of Ptolemy’s table, written entirely in 
our own characters, but with values still given in the sexagesimal system.  You will use both of 
these tables in the exercises that follow. 
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Source:  Episodes in the Mathematics of Medieval Islam by J. L. Berggen. 
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Exercises 
 

1. For a 6o central angle, the length of the intercepted chord is __?__.   Since Ptolemy’s 
table uses the base-60 system, express the chord length in our own base-10 system. 

 
2.   If the central angle is 40o, in a circle with radius 60, find the length of the intercepted 

chord.   
 

3. Now you can compute the sine of 20° from the chord length of the 40o central angle.  In 
the diagram, ∠ . oAPC 40=

 
a)   Express AB in terms of AC and in terms of the sine of 20°. 

  
b)   Determine AB numerically from the value for AC found in exercise 2.  
 
c)   Calculate sin 20° from your expressions in a and b.  Compare this with your 

calculator’s value. 
 

 
 
                 
      
       
4. With a partner, calculate sin(½ A) in two ways.  Make up 2 central angles.  For each 

angle, one partner will use Ptolemy’s table to find the chord of the angle, then determine 
the ratio which produces sin(½ A) and finally calculate that value.  The second partner 
will find sin(½ A) by using the calculator.  Then the two of you should compare your 
answers. 

 
5. Use Ptolemy’s value that Crd 36o = 37;4,55.  Calculate sin 18° from this value and check 

its accuracy against your calculator. 
 
6. Develop the formula relating the chord of a central angle θ in a circle with radius r to the 

sine of ½θ. 
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Mathematical and Historical Notes  
 
 The exercises helped you to see why Ptolemy was a major figure in the beginnings of 
trigonometry’s history.   
 
 Nowadays calculators give us sine values easily.  How did Ptolemy construct his table? 
(If you are curious and like challenges, see the unit titled The Development of Ptolemy’s Table 
for a worksheet, which steps you through his process.) 
 
 Here is a summary.  Ptolemy inscribed the regular polygons with 3, 4, 5, 6, and 10 sides 
in a circle of radius 60.  Then, using only Euclidean geometry, he calculated the side of each 
polygon.  The results were chords for central angles of 120o, 90o, 72o, 60o, and 36o respectively.  
He discovered how to calculate the chord of half the arc of a known chord, added and subtracted 
known arcs and chords, and thus built his chord table. 
 
 

How Ptolemy’s Table Helped the Greeks Solve Triangles 
 
 In the second part of this unit, you will learn how the Greeks solved triangles.  Solving a 
triangle means that, given certain information about some sides and angles, find all 3 sides and 3 
angles.  Then you will learn how the Greeks’ mathematical discoveries, wonderful as they were, 
raised other questions.  As astronomers strived toward answers, the process would lead to the 
continuation of the story of trigonometry.   
 

The Greeks focused on solving right triangles.  (To solve an acute or obtuse triangle, they 
would break it down into right triangles.)  Here is one procedure the Greeks used. 
             
 Problem:                  B 
 Given the hypotenuse c, and an acute angle A,    
 Find the legs a, b, and the other acute angle B. 
                                                                                                                                                     a 
                                  c                             a 
 Solution: 
 First consider a circle with standard radius 60. 
 Draw right triangle DEF in the circle, so that  
 .  From geometry, remember that                  A                           b                       C DA ∠=∠
 when a right triangle is inscribed in a circle, 
 the hypotenuse is a diameter of the circle.   
 The diameter here is 120. 
 Draw radius PF. 
 Then ∠ .  Why? DEPF ∠= 2
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The next step would be to look up in Ptolemy’s       EPF∠
 table and find the chord, which is just side EF.  The                                                            
 rest will be easier to understand if we keep in mind that 

 EF = chord of 2 , and therefore (by substituting D∠
 ) EF = chord of 2 . AD ∠=∠ A∠

 
 
 Next we are ready to return to the original triangle ABC.             

 Because ∆ , we have DEF ∼ ABC∆
EF
ac

=
120

.    

 Then 120a = c·EF or 120a = c· chord of                          
    

A∠2

 

 And therefore finally 
120

ca = · chord of  A∠2 .

The Greeks constantly used the above formula for a.  Thus, given the hypotenuse c and 
an acute angle , they could find the side a opposite that acute angle.  Translating the 
algebra gives us the following recipe: 

A∠

 Double the angle ∠ . A
 Look up the chord in Ptolemy’s table 
 Multiply by the hypotenuse. 
 Divide by 120. 
 

Reminder!  The original problem required us also to find ∠  and the side b opposite 
.  How do we do that? 

B
B∠

 
Why the Saga Continued 

 
Remember the last ingredient in the Greek recipe, to divide by 120?  And remember that 
the Greeks worked in the base-60 system?  Watch what happens when a base-60 number 
is divided by 120: 

 
This example uses the example 37;4,55 (expressed in base-60), which is 37 + 4(1/60) + 
55(1/602) = 37.08194444… 37.0819 (expressed in our base-10). ≈

 
37;4,55 divided by 120 

means  2

4 5537 120
60 60

 + + ÷ 
 

 

 

  = 2

4 55 137
60 12060

+ + ×
 
 
   

 

  = 
)60(120

55
)60(120

4
120 2++
37  

 23 



  

  = 
)60)(60(2

55
)60)(60(2

4
)60(2

37
2++  

  

  = 
)60(2

55
)60(2

4
)60(2

37
32 ++  

 

  = 2 3

37 4 55 2
60 60 60

+ + ÷
 
 
   

 
  = 0;37,4,55 divided by 2 = 0;18,2,27 
 
 So, 37;4,55 divided by 120 is equal to  0;37,4,55 divided by 2.  This gives a short cut 
when dividing a base-60 number by 120.  The Greeks just had to shift the numbers one place to 
the right and then take half.  Astronomers wondered if they could devise a chord table, which 
would shortcut out even the steps of doubling the angle and dividing the chord by two!  Much of 
trigonometry was developed in seeking to create such a table.  The Hindus succeeded, as 
recorded in the work of the Hindu astronomer Aryabhata (475-550), and they gave us our 
modern concept of sine as a half-chord in a circle. 
 

Extension Exercises 
Problems for Inquiry, Challenge, and Enjoyment 

 
1. Sixtieths Column.  Figure out how to the use the sixtieths column in Ptolemy’s table.  

Note that the value in that column is one-thirtieth of the difference between the chord 
value in that row and the chord value in the previous row. 

 
2.   Development of Ptolemy’s Table.  As a project, turn to that unit in this book and 

complete the steps in Ptolemy’s process. 
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The Beginnings of Trigonometry: 
Sine Values Found in Ptolemy’s Table 

Teacher Notes 
 

Students should already have worked some simple text exercises based on right triangle 
definitions of sin, cos, tan, sec, csc, and cot.  Mention to them that the very beginnings of 
trigonometry did not start with that material.  The definitions of the six trigonometric ratios, their 
names, their association with angles, and decimal notation - all did not yet exist. 
 
 Ancient trigonometry did not deal with ratios.  It dealt with lengths of chords in circles.  
Usually, the chord is thought of as subtending an arc of a particular measure, not an angle.  The 
concept of angle is either weak or absent.  It was not until the sixteenth century that the sine and 
the other trigonometric functions were thought of as ratios.  The word “trigonometry” first 
appeared in 1595 in the title of a book by Bartholomew Pitiscus (1561-1613) of Germany. 
 

Solutions to Exercises: 
 
1. It may be worthwhile to walk the class through this exercise, with emphasis on 

explaining the base-60 system.  You may want to explain it as follows: 
  

Today we use the base-10 system.  Before trying to understand base 60, let’s review what 
base 10 means. [Write amply on the board.] As an example, look at the number 12.345.  
Find the decimal point.  To the left is the units, so we have 2 units, and to its left are the 
tens, so we have 1 ten.  Look at the decimal point again.  To the right we have 3 tenths, 
then 4 hundredths, and 5 thousandths.  Thus 12.345 = 1(10) + 2(1) + 3(1/10) + 4(1/102) + 
5(1/103).  Remember that the digits in the base-10 system are 0 to 9.  Now look at 
Ptolemy’s table.  Take for example the first chord listed, 0;31,25.  The semicolon (;) is 
like our decimal point.  A comma separates the 31 and 25 because in base 60, the 
possible [quote] digits [unquote] are __?__.  (Response: 0 to 59.)  So a comma separates 
the blocks.   0;31,25 means 0(1) + 31(1/60) + 25 (1/602), or 0(1) + 31/60 + 25/3600.  This 
equals __?__.  (Calculator exercise.  Response: 0.5236111...) Therefore 0;31,25 ≈ 
0.52361. 
 
For a central angle of 6o, the chord is 6;16,49 = 6(1) + 16(1/60) + 49(1/602) = 6 + 16/60 + 
49/3600 = 6.28028. 

 
2. Central angle 40o.  Chord = 41;2,33 = 41(1) + 2(1/60) + 33(1/602) = 41 + 2/60 + 33/3600 

= 41.04250 
 
3. a. AB = ½ AC.   Since sin 20o = AB/AP, we also have AB = AP sin 20o = 60 sin 20º. 
 
    b. Since AC is the chord of the 40º central angle, it is equal to 41.04250.  Therefore,  

AB = ½ AC = 20.52125. 
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    c. sin 20º = AB/60 = 20.52125/60 = 0.34202.  The calculator gives sin 20º = 0.34202, so 
Ptolemy’s table is accurate to at least five decimal places. 

 
5. The chord of 36º is 37:4,55 = 37 + 4/60 + 55/3600 = 37.08194.  Using the same 

procedure as before, we find that sin 18º is half this value divided by 60, or 37.08194/120 
= 0.30902.  The calculator gives sin 18º = 0.30902 as well. 

 
6. sin ½ ∠ APC = AB / r =  ½AC/ r.  But AC is the chord of ∠ APC in a circle of radius r.  

Writing that angle as angle θ, we have sin(θ/2) = ½ chord(θ)/ r.  Another way to write 
this would be that chord(θ)=2r sin(θ/2). 

 
How Ptolemy’s Table Helped the Greeks Solve Triangles 

 
For most of this problem, students will be working with ∆DEF whose hypotenuse is 120.  If c 
does not equal 120, then ∆DEF is an enlargement or reduction of the original triangle.  But 
∆DEF is similar to ∆ABC.  Therefore, corresponding angles are equal and corresponding sides 
are proportional.  Give the students comforting assurance that we will definitely return to the 
given value of c.   Near the end of the solution we will adjust for the scale change. 
 
∠EPF = 2∠D because the measure of an inscribed angle is half that of its intercepted arc.  The 
measure of a central angle equals that of its intercepted arc. 
 
To find ∠B, we simply subtract the measure of ∠A from 90°.  We can find side b either by 
repeating the above process or, more simply, by applying the Pythagorean Theorem. 
 
A second type of problem was: given the hypotenuse c and one leg a, to find the other leg b and 
the 2 acute angles ∠A and ∠B.  This is recognized as just the reverse of the problem worked out 
above.  
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Shadow Reckoning 
(Introduction to the Tangent Function) 

Teacher Notes 
 
Description of Unit:  In this unit we introduce the tangent function as the ratio of the length of a 
vertical pole to the length of a shadow created by that pole, due to a light source.  The students 
will calculate tangent ratios for various locations of that light source.  They will graph direct 
variations and use the graphs to solve proportions.  The students will also calculate tangent 
ratios, using the solar angle as the independent variable.  The unit consists of a skit, two teacher 
scripts for the class, with extra teacher notes, and two classroom activities. The skit may be used 
in any of several ways.... either acted out by two students at the start of class, left on the 
overhead for students to read as they enter class, acted out by the teacher and a student...you 
decide. 
 

This section of the module has been targeted for a beginning Geometry class, and could 
be used early in the year. 
 
Prerequisites:  It is only required that students understand how to measure angles, and that they 
be able to use a software program such as Geometer’s Sketchpad.  Although it is not necessary 
that they know how to solve a proportion (the skill may be taught in this lesson), an acquaintance 
with the topic is desirable. 
 
Materials:  In order to carry out Classroom Activity #1 about 15 poles/sticks will be required.  
Also, rulers or measuring tapes will be needed in order to measure pole heights and shadow 
lengths.  Graph paper will be needed in order to graph the direct variations involved.  On the 
subsequent class session a transparency with the cumulative graph results through the day is 
desirable.   
 
 In order to carry out Classroom Activity #2 a computer lab setting is strongly suggested, 
with Geometer’s Sketchpad or similar software available.  A second option for this activity 
would be to issue protractors and do the measurements manually, but the time it would probably 
take to reconcile the class results makes this option awkward.   
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Shadow Reckoning 
(Introduction to the Tangent Function) 

Introductory Skit 
 
 
Thales:  Hey, Mom!! Can I borrow the reins to the mule? 
 
Mom:    Sure, if first you can tell me the height of the tree outside, the one the mule is tied to. 
 
Thales:  OK, I’ll be right back. 
        (later) 
 
Thales:  Hey, Mom!!  The tape measure keeps falling over before I can slide it high enough. 
 
Mom:    You’re a smart kid.  Go out and try it again. 
          (later) 
 
Thales:  Hey, Mom!!  It’s 47 cubits and 3 palms!! 
 
Mom:    What a good boy!  How’d you do it? 
 
Thales:  Well, you’re not going to like this, but I figured I’d take the mule to the store to get a 

longer measuring tape...and.... I forgot to untie him first     . .........and......... we 
accidentally pulled the tree over. 

 
Mom:   Oh no!  That was my favorite olive tree. 
 
Thales:  But.......... since it was down anyway, at least it made measuring it lots easier. 
 
Mom:   Thales!!  I wanted to know its height, not its length!! 
 
 (The story you have just heard is false...the names have been changed to lend authenticity. What 
could Thales have done to measure the height of the tree without pulling it over?) 
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 Shadow Reckoning 
Teacher Script 

 
 Although trigonometry has its origins in measuring heavenly distances and paths, and 
true right triangle ratios are only a later distillation of this study, in some ways the right triangle 
has been hiding behind the scenes of these astronomical calculations, in the shadows, so to 
speak.  
 
 Babylonian works dating from 1700 BC give tables recording shadow lengths from a 
fixed vertical pole measured over a prolonged period of time.  Similar tables of shadow lengths 
can be found in the Chinese, Egyptian, and Greek early civilizations. 
 
 A quote from the oldest known Chinese mathematical treatise, the Zhoubi Suanjing, 
shows that the Chinese were aware of the importance of the shadow/pole relationship: 
 

He who understands the earth is a wise man, and he who understands  
the heavens is a sage.  Knowledge is derived from the shadow.  The  
shadow is derived from the pole. And the combination of right angle  
with numbers is what guides and rules the ten thousand things. 

 
 (Joseph Needham: Science and Civilization in China, Vol. 3 Cambridge University Press, 
1959). 
 
 The first well-known mathematician in Western/Greek culture, Thales (625-547 BC), was 
also known for his work with shadow reckoning.  The historian, Plutarch, writes of him in his 
Banquet of the Seven Wise Men: 
 

Although he (the King of Egypt) admired you (Thales) for other things,  
yet he particularly liked the manner by which you measured the height 
 of the pyramid without any trouble or instrument, for by merely placing 
 your staff at the extremity of the shadow which the pyramid casts, you 
 formed, by the impact of the sun’s rays, two triangles, and so showed 
 that the height of the pyramid was to the length of the staff in the same 
 ratio as their respective shadows. 

 
 (David Burton: The History of Mathematics: An Introduction. New York: Allyn and 
Bacon, 1985). 
 
 These calculations and resulting tables were used for agricultural purposes, as they 
confirmed seasons for planting and harvesting of crops.  They were also used for social and 
religious purposes.  Egyptian and Hindu priests fixed religious rituals according to the sun’s 
position in the sky, and they determined that position by shadow lengths.  Islamic society bases 
three of their five prescribed times for daily prayer on shadow lengths.  Shadow lengths and 
similar right triangles answered early questions about the nature of the universe, such as the 
distances between heavenly bodies. 
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Shadow Reckoning 
Teacher Notes  

 
1) The phrase “shadow reckoning” was still in use hundreds of years later.  The Hindu 

mathematician Brahmagupta (625 AD) titled a chapter in his book “Measure by Shadow” and 
Bhaskara (1150 AD titled a chapter in his book “Determination of Shadows”.  One of the more 
famous mathematical challenges was offered by Bhaskara in his book Lilavati, and might be 
worth offering to your students. 
   

The ingenious man who tells the shadows of which the difference is 
measured by 19, and the difference of hypotenuses by 13, I take to be 
thoroughly acquainted with the whole of algebra as well as arithmetic. 

 
The problem translated means, given two shadows from the same pole (two light 

sources), if one shadow is 19 longer than the other, and the corresponding hypotenuse is 13 
longer than the other, to find the length of each shadow. 
 
 2) Concerning the King of Egypt's admiration for Thales for being able to determine the 
height of a pyramid, Plutarch's quote doesn't quite do the problem justice.  Assuming a square 
pyramid, the ratio of shadows is not really the ratio of heights of staff and pyramid because the 
length of the shadow of the pyramid can only be measured up to the edge of the base of the 
pyramid…. Hmmm, how would you find the actual height? 
 If Thales waits until the length of his staff shadow is equal to the length of the staff, then 
both right triangles are isosceles.  At that point if the pyramid shows a shadow of 20 feet, we 
know that the pyramid is 20 feet plus the amount of "hidden shadow" underneath the base of the 
pyramid.   
 If Thales then waits until another day, when his 6-foot staff produces a 12-foot shadow in 
the same direction as the previous shadow, the shadow of the staff right triangle will "have 
grown another staff in length".  At that time the pyramid shadow will also have grown another 
pyramid height.  So, if the original pyramid shadow was 20 feet in length, and the new 
measurement gave a shadow of 80 feet, then their difference, 60 feet, is the pyramid height. 
 This can be expressed as a system of linear equations.  If h is the height of the pyramid 
and y is the length of the "hidden shadow" underneath the pyramid, then the two measurements 
yield the equations x/(y+20) = 6/6 = 1 and x/(y+80) = 6/12.  By inspection the second 
denominator must be double the first denominator, and since increasing the denominator by 60 
doubles it, the original denominator (and numerator, the pyramid height) must be 60. 
 

3) Classroom Activity #1 is designed to give the students a concrete feeling for the 
concept that although shadow lengths vary according to both the height of the pole and the time 
of the day, that at any given time of day, the shadow length is proportional to the pole height. 
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Classroom Activity #1 
 
Task:  To build a table like those of the ancient civilizations. This is to be done as a single group 
activity. 
 
Step 1.  Hold poles of varying lengths vertically touching the ground, one pole per student or 
pair of students.  Carefully measure the length of each pole. 
 
Step 2.  Carefully measure the length of the shadow produced by each pole. 
 
Step 3.  Make a table of pole heights versus shadow lengths. 
 
Step 4.  Graph these ordered pairs (shadow length, pole height) 
 
Step 5.  What is the ratio of the length of the pole to the shadow length? 
 
Step 6.  Write the fraction thus obtained as a ratio of relatively prime integers. 
 
Step 7.  Using your graph, answer the questions below. 
 

a)  How long a shadow will be cast by Six Foot Steve? 
 
b)  Shorty casts an 8.5-foot shadow.  How tall is Shorty? 
 
c) If 5ft 9in Fred casts an 8ft 6in shadow, is it likely to be earlier in the day or  

later?  Why? 
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Teacher Notes to Classroom Activity #1 
 
1)  Check the slope (or have other classes do it) at hourly intervals throughout the day.  At the 

next class session you should have added other lines (each through the origin), each line 
corresponding to one of your hourly measurements.  These lines represent what are called 
direct variations, and you may wish to elaborate on that, depending on your students’ 
familiarity with the topic.  In addition you should now build a second table, with the time as 
the independent variable and the slope (ratio of pole height to shadow length) as the 
dependent variable. Your table should end up looking something like the one below. 

 
 time of day  8am  9am  10am  11am  12pm 
 ratio of pole length 
 to shadow length 1/3  2/5  1/1  7/2  23/2 
 
 
2)  The question of equivalent ratios will come up, because the varying shadow lengths                 

may make for some relatively prime denominators. You may elect to make your pole lengths 
be in multiples of the shortest one (i.e. 6 inches, 1ft, 1.5 ft, 2ft…) or you may wish to make 
the lengths random.  This second approach will open the door to some elementary statistics.   
In order to build second table, you will need to look at the collection of data for each hour 
and do some elementary statistical analysis (discard outliers and discuss measures of central 
tendency) before deciding on your table entry.  Have them consider both common 
denominator as well as decimal approaches, pointing out that historically decimals were not 
available until the 1500s.   

   
Once the second table has been made, some typical proportion problems should be assigned 
to the class.  These are extensions of those asked at step 7 and should be considered both by 
looking at the graph and by solving the appropriate proportion. 
 
Here are some examples.  

 
  “At 11am how long will Six Foot Steve’s shadow be?”  

         or “If Five Foot Fred casts a 12.5 foot shadow, what time is it?” 
 

Some drawbacks to the second table thus created are: 
i) Your measurement for 9 am in March will be different than one for 9 am in 

June.  This might result in a LARGE collection of tables, one for each day, rather 
unwieldy for general use.   

ii) It might be a rainy day, or too overcast to produce a shadow. 
iii) Accurate ratios for measurements around noon may be difficult because the 

shadow may be very short compared to the length of the pole. 
 

These drawbacks should be brought out in a class discussion, which then leads into how to 
overcome the drawbacks…. see teacher script below. 
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Teacher Script 
 

 Overcoming the drawbacks of the first table 
 
 To overcome the first drawback, we could choose to compare our ratios with a different 
quantity than time of day. Most of the major civilizations adopted the solar angle as their 
independent variable.  This was the angle formed by the sun’s ray where the shadow terminated. 
It is sometimes referred to as the angle of inclination for the lines graphed in class activity #1.  
  See the picture below, made by Geometer’s Sketchpad. 
 
 

shadow

pole
sun's ray

solar angle
 

 
 
 
 Using the solar angle as the independent variable resulted in tables that looked more like 
the one below.  This table is not dependent on the time of day or year. 
 
 solar angle  10o  20o  30o  40o  50o  
 ratio of pole length 
 to shadow length 2/11  4/11  4/7  5/6  6/5 
 
 
 Thanks to computer technology, we can overcome drawbacks two and three.  See 
Classroom Activity #2. 
 
 

 33 



Classroom Activity #2 
 
 To build an accurate table, using the solar angle as the independent variable.  This is to be 
done singly or in pairs, using computer software in a lab setting. 
 
Step 1: Open a drawing program on the computer, such as Geometer’s Sketchpad.  
 
Step 2: Construct a horizontal segment AB, as shown below.  
 
Step 3: Construct a perpendicular line through B, as shown below. 
 
Step 4: Construct a point C on that line. 
 
Step 5: Measure angle CAB and record it in your table. 
 
Step 6: Measure the ratio of the segments CB and AB and record that also in your table. 
 
Step 7: Slide C along BC, forming new angles and new ratios, and record these as well. 
 
 

A B

C
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Teacher notes to Classroom Activity #2 
 

1)  The table developed by the students in the assignment is the tangent function.  Their results 
can be compared to tables for tangents found in the backs of most Geometry and 
Trigonometry texts.  They also can be compared to calculator-generated results, although the 
sense of “table” is lost when you utilize the calculator in this setting.   

 
2)  The assignment may be done individually, but pairs are recommended for quality control 

purposes, and also to provide the opportunity for observation and discussion. You may wish 
to have them make interpolative guesses from their tables, and then check their accuracy with 
the computer program. 

 
3)  You may also wish to point out to them how ratios for complementary angles are reciprocals, 

and ask them to explain why. 
 
4)   If your sketchpad program has a coordinate plane, you may wish to have your students make 

a second table, comparing the slopes of various line segments with their solar angle.  This has 
the advantage of tying together the pole/shadow ratio with the rise/run ratio. Have each 
student construct a line segment whose endpoints have integer coordinates. This slope is their 
independent variable.  Then have them measure the angle off the horizontal, and record that 
value as the dependent variable.   Such a table would permit your students to find the angles 
of inclination and intersection of lines, given equations of those lines.  This is a gentle way to 
introduce inverse functions in general to a Geometry class, and the inverse tangent function 
in particular. 

 
5)  The results for the 30, 45, and 60-degree angles are exactly determined in Geometry classes.  

It should be noted that our computer-generated ratios are the decimal approximations of these 
exactly known quantities.  This may lead into a discussion of what other exact values can be 
determined.  This search motivates many of the trig identities found further in this module.  
Since the whole concept of “decimals” was far in the future, students should be made aware 
that these early civilizations were drawn to consider these exact values, so that they could 
avoid more and more complicated integer ratios. For example, for many hundreds of years, 
better and better approximations of π meant more and more complicated ratios of integers, 
from 22/7 to 355/113.  An exact value for approximations, even if expressed as a square root, 
cube root or other fashion, was more desirable than the more cumbersome ratios of ever-
larger pairs of integers. 

 
6)  The Islamic culture developed a tool now known as the astrolabe, for measuring heavenly 

angles, and the relevant scales were known as the “shadow ladder”, the “shadow box”, and 
the “shadow square”.  The Latin phrases umbra recta and umbra versa, which refer to legs 
of right triangles, literally mean “straight shadow” and “turned shadow”. 

 
7)  The word “tangent” comes from the Latin word tangere, which means, “to touch”.  From this 

word we get the words “tag”, “tangible”, and “attain”.  Even the word “tax” comes from the 
Latin, to touch (and keep) someone’s money.  You’ve heard of a “soft touch”.  The word is 
also used to describe lines, which touch, but don’t cross, a circle or any other curve. 
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Development of Ptolemy's Table 
Teacher Notes 

 
Description of Unit:  The exercises in this unit trace the development of a table of sines in 
increments of 1/2 degree.  Since they are easier to work with, sines and cosines are used in the 
derivation instead of the chords that Ptolemy employed.  The exercises could be presented as 
group work over three to five days depending on the background of the students.  They would 
also be an excellent alternative or enrichment assignment. If the school has a math team, the 
exercises would be especially interesting to its members. Though each step is given in detail, and 
the mathematical background required is only basic geometry and plane trigonometry, much of 
the work is for students who like multi-step solutions and appreciate that not all mathematical 
problems are solved in less than five minutes.  Many students will find the exercise in which 
sin18° is calculated using the geometry of the pentagon especially challenging. After completing 
this unit, students should have an appreciation of the process that a mathematician goes through 
to find a solution to a problem.  Note that calculators do not use this method of computation, but 
rather that of infinite series. 
  
 The following is a list of exercises: 
 1.  Proof of Ptolemy's Theorem (for any quadrilateral inscribed in a circle, the  
       product of the diagonals equals the sum of the products of opposite sides).  
 2.  Derivation of trigonometric identities using Ptolemy's Theorem:      
 3.  Calculation of sin18° using the properties of a pentagon. 
 4.  The use of the results of exercises 1-3 to estimate the sines of 1° and 1/2°. 
 
 
Prerequisites:  A general knowledge of the relationships between angle and arc measurement is 
necessary.  In the derivations of the angle addition formulas for sine and cosine, it is assumed 
that the students know the right triangle trigonometric relationships.  They should also know the 
values for the sine and cosine of 30º, 45º, and 60º.  As stated above, the material is perhaps best 
appropriate for the student who loves challenges or, at least, a motivated student interested in 
proofs. 
 
 
Materials:  The student pages and exercises should be duplicated for student use.  Though 
individual exercises may be assigned, the intent is that the student does all four, as well as read 
the introduction, so that the flow of mathematical thought is not lost. Answers to the exercises 
are supplied. A scientific calculator is needed for sine computations. 
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From Ptolemy’s Almagest 
 

 
 
 

 
In Greek, Ninth century, Claudius Ptolemy, who lived in the second century A.D., did work of 
enormous importance in astronomy and geography in which the Vatican Library has particularly 
rich holdings.  The Almagest, written about A.D. 150, is a comprehensive treatise on all aspects 
of mathematical astronomy – spherical astronomy, solar, lunar, and planetary theory, eclipses, 
and the fixed stars. It made all of its predecessors obsolete and remained the definitive treatise on 
its subject for nearly fifteen hundred years. This, the most elegant of all manuscripts of the 
Almagest, is one of the oldest and best witnesses to the text, and is very rich in notes. 
 

Source:  http://metalab.unc.edu/expo/vatican.exhibit/exhibit/d-mathematics/Greek_math2.html
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Ptolemy's Theorem and Trigonometric Identities 
Student Pages 

 
 Claudius Ptolemy (c.100-178) was a noted astronomer and geographer who lived in 
Alexandria, Egypt. In his Geography he discussed map making and projections, and gave the 
latitudes and longitudes of many places. He calculated the angle between the celestial equator 
and the ecliptic as 23º51'20", where the ecliptic is the great circle marking the apparent annual 
motion of the sun through the stars.  For Ptolemy, the ecliptic was the actual path of the sun, 
because he regarded the earth as fixed at the center of the celestial sphere. In his Mathematical 
Collection, he explained the motions of the moon, sun, and planets in terms of epicycles (circles 
moving on circles). His model appears clumsy from a modern point of view, but it did accurately 
explain the observed positions of the celestial bodies. The Mathematical Collection quickly 
became the established authority in astronomy, much as had Euclid's Elements in geometry. In 
time Islamic scientists came to refer to the Mathematical Collection as al-magisti, meaning "the 
greatest," and it is now known by its derivative name, The Almagest.  
 
 Early in The Almagest, Ptolemy calculated a table of chords, which is equivalent to a 
modern table of sines, in steps of 1/2º. We will retrace the work, using sines and cosines rather 
than chords. The overall plan had several steps: 
 

1.  Derive identities equivalent to those for  and sin( ),cos( ),sin( ),cos( ),a b a b a b a b+ + − −

sin
2
a 

 
 

.  This had probably been done previously by Hipparchus of Bithynia (190-

120 BCE), who was one of the first Greeks to use the Babylonian degree measure of 
angles in mathematics and who introduced celestial coordinates. 

2.  Calculate sin 60˚, sin 45˚, sin 30˚, and sin 18º, along with the corresponding cosine 
values. (We will assume known the sine and cosine of the first three angles 
mentioned.) 

3.  Use the value sin 30º and the identity for sin(a/2) to calculate the sine of 15º. 
4.  Use the identity for sin(a–b) to calculate sin 3º as sin(18º – 15º).  
5.  Use the identity for sin(a/2) to calculate, successively, the sines of  (3/2)º and  (3/4)º. 
6.  Use the above values to estimate the sines of 1º and  (1/2)º. 
7.  Fill in the missing values by means of the known values and formulas.  

 
This plan requires extensive calculations, but the work was carried out and produced a 
trigonometric table, accurate to two sexagesimal places or five decimal places. These exercises 
retrace the work in modern terms. 
 
 Ptolemy relied heavily on the fact, established centuries earlier in Euclid's Elements, that 
an angle inscribed in a circle equals half its intercepted arc.  This implies that angles intercepting 
the same arc of a circle are equal. 
 

Consider the triangle ABC inscribed in a circle with diameter 1, with side a opposite 
angle A.  Draw the diameter through B and the complete the triangle A’BC. 
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A

B

C

A’

a
O

 
Angles A and A' are equal, since both intercept arc BC, but since A'B is a diameter, the angle 
BCA' is a right angle.  Therefore, sin A = sin A'= a/A'B = a/1 = a.  A similar argument shows that 
the sides b and c, opposite angles B and C, respectively, are also equal to the sines of their 
opposite angles. In other words,  a = sin A, b = sin B, and c = sin C. This is an important fact 
that will be used in the exercises, which follow. 
 
Exercise 1.  Prove Ptolemy's Theorem: 

 
For any quadrilateral inscribed in a circle, the product of the diagonals equals the sum of 
the products of the opposite sides.      
 
 

A

B

C

D

E

 
 
Let ABCD be the given quadrilateral. Construct line BE so that ∠ABE = ∠DBC.  
This could be done on Geometer's Sketchpad by copying ∠DBC and letting E be the point of 
intersection of the newly constructed side of the angle with segment AC. Then all the length 
relationships that follow could be computed and confirmed with the calculator feature of 
Sketchpad. 
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1.   Show that ∆ABE ~ ∆DBC.   Remember that if two inscribed angles intercept the same (or 

even equal) arcs, then the angles are equal. 
 
 
 
 
 
2.  Show that AB:DB = AE:DC and rewrite this as an equality of products: AB·DC = DB·AE. 
 
 
 
 
 
3.  Show that ∆ABD ~ ∆EBC. 
 
 
 
4.  Show that AD:EC =DB:BC and rewrite this as an equality of products: AD·BC = DB·EC. 
 
 
 
5. Add the equalities from steps 2 and 4. 
 
 
 
6. Factor DB on the right, and substitute for AE + EC to complete the proof.  
 
 
 
 
 
7. Here are two proofs that use Ptolemy's Theorem.  Both are familiar - the 
    Pythagorean Theorem and the Law of Cosines.  For the Pythagorean theorem a  
    rectangle is inscribed in the circle; for the Law of Cosines, a trapezoid is used. 
   
    In the figure below, a rectangle has been inscribed in a circle. The Pythagorean Theorem 
    follows almost immediately if Ptolemy's Theorem is applied.  Try it! 
        

 

A 

B 

C b 

b 

a c is the length of a diagonal  a 
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For the more general Law of Cosines, use the figure below. Remember that a trapezoid inscribed 
in a circle must be isosceles (try to prove it sometime). This proof is a lot more challenging than 
the previous one - but the sense of satisfaction is proportional to the effort expended. [Doesn't 
that sound like something a math teacher would say?] 
     
 

    

 

A 

B 

C b 

a c is the length of a diagonal  

B’ 

 
If you have trouble with this proof of the Law of Cosines, here's a hint: Draw perpendiculars 
from A and C to the extension of BB' and show that the distance . ' 2 cosBB b ab C= −
 
Exercise 2.  Use Ptolemy's Theorem to Derive Trigonometric Identities. 
    
1.   Derive the formula for sin(α+β) directly from Ptolemy's theorem by means of the following 

diagram.  
       

             

S

Q

R

P

O

α
β

 If the diameter SR=1, then lengths PQ, QR, and PR are the sines, respectively, 
  of what angles?  Remember that if circle has a diameter of 1, then the sine of 
 any inscribed angle is equal to the length of the chord of the intercepted arc. 
 
 
 What do the cosines of α and β equal?  (look for right triangles)  
  
 Apply Ptolemy's theorem to quadrilateral PRQS. 
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2.  Derive the formula for cos(α+β) directly from Ptolemy's theorem, using the figure below, 
which is obtained from the earlier figure by placing the point T halfway around the circle 
from P and then drawing TS and TR.  Recall that the diameter of the circle is 1 unit in length. 

 

     

S

Q

R

P

O

α
β

T

β

 
 Triangles STR and RPS are congruent, and PT is a diameter.  

As above, PQ = sin(α+β), and since PT is a diameter, ∆PQT (two sides of which 
 have not been drawn, to avoid clutter) is a right triangle and the length of 
  side TQ is cos(α+β ).  
 
 Apply Ptolemy's theorem to quadrilateral STQR.    Hint: TR = SP = cosβ. 
 
 

The formulas for cos(α−β) and sin(α−β) may now be obtained by using –β in place of � in 
the formulas for cos(α+β) and sin(α+β) and applying the rules  and 

.  
cos( ) cosθ θ− =

sin( ) sinθ θ− =
 
 
3.  An alternative way to derive the formula for sin(α−β) directly from Ptolemy's theorem is 

based on the figure below, in which the diameter AD has length 1.        
 
 
                                  B 
 
                                                                       C 
 
 
                     A                                                 D 
 
 
 
 
 
  ∠BAD = α        ∠CAD = β       ∠BAC = α−β 
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Use your knowledge of right triangles as well as the fact that, since the diameter of this circle 
is 1, the sine of any inscribed angle is equal to the length of the chord of the intercepted arc 
to determine the following lengths in terms of the sines or cosines of α, β, or α−β. 

 
a.  BD = 

 b.  CD = 
 c.  AB = 
 d.  AC = 
 e.  BC =  
 f.   AD =  

g.  Substitute the answers to parts a-f directly into Ptolemy's theorem. Then rearrange to  
get the difference formula for the sine:  sin(α−β) = sinαcosβ – cosαsinβ. 

 
 
4.  Derive the half angle formulas for cosine and sine. 
 
 a.  Set β = α in the sum formula for the cosine to derive a formula for cos 2α. 
 
 
 

b.  Substitute 1 – cos2α for sin2α in the formula in a to get a formula for cos 2α involving 
only the cosine. 

 
 
 
c.  Substitute θ for 2α in the formula in b (and therefore θ/2 for α) to get a formula 

relating the cosine of θ/2 to the cosine of θ.  Rearrange the terms in this formula to get 
a formula for cos2(θ/2) in terms of cos θ. 

 
 
 
d.  By substituting 1 – sin2(θ/2) for cos2(θ/2) in the last formula and rearranging, obtain a 

formula for sin2(θ/2) in terms of cos θ. 
 
 
 
 
e.  Solve the formulas in c and d for cos(θ/2) and sin(θ/2) respectively to get the half-   

angle formulas for the cosine and sine. 
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Exercise 3.  Use the Geometry of the Pentagon to Calculate sin 18°. 
 
In the diagram, ABCDE is a regular pentagon.  That means that each of the arcs AB, BC, CD, 
DE, and EA are 72º. 
 

D

E C

A B

G

H

F

 
      
 
1. Show that angle ADB is 36°. 
 
 
 
2. Show that angles DAB and DBA are each 72°.  
 
 
 
3. Show that ∆ABF ~ ∆ DAB. 
 
 
 
4. Show that triangles ABF and ADF are isosceles. 
 
 
 
 
5. Let AB = 1 and y denote the length of AD.   Show that FB = y – 1. 
  
 
 
 
6. In ∆ABF write the ratio of the long side to the short side in terms of y. 
 
7. In ∆DAB write the ratio of the long side to the short side in terms of y. 
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8.  Since the triangles in #6 and #7 are similar, the ratio of their sides must be equal. Rewrite the 
equality of these ratios as a quadratic equation in y and solve.  Write your answer both in 
terms of radicals and as a decimal to as many decimal places as your calculator will handle. 
Remember that y must be positive.  

 
 
 
 
9.  Draw line DG and extend it to its intersection H with AB. Show that ∆ADH is a right triangle 

and that the ratio AH/AD is sin 18°. 
 

D

E C

A B

G

H
 
 
    

10.  Use the fact that 
yAD

AH 2
1

=  and the value of  y found above to calculate sin 18° 

       in radical form.  Express your result with rational denominator.   
 
 
 
 
 
11.  Use a calculator to compute your result from #10 to as many decimal places as your 

calculator can handle.  Compare your result with the calculator’s value for sin18°.  These 
results should agree to as many decimal places as your calculator displays. 

 
12.  Substitute your expression from #10 into the formulas for 2cos18 1 sin 18= − . 

      The resulting expression, 
4

1052 +  , is a bit awkward to calculate, but Ptolemy 

      was able to compute its value.  Calculate it to as many decimal places as your calculator can 
handle and compare with the calculator’s value for cos 18º. 
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Exercise 4.  Use the results derived above to estimate the sines of 1° and 1/2º 
 
 

1. Use the half-angle formula for the sine, 1 cos
2 2
α −

=sin , which was derived in Exercise 2, 

4 and whose equivalent for chords was known to Ptolemy, to calculate sin 15°.  Set 
α=30

α

ο and use your knowledge of the cosine of 30º. 
 
 
 
 
 
 
2.    Find cos 15° using the half-angle formula for cosine derived in Exercise II, 4: 

2
cos1

2
cos αα +

= . 

 
 
 
 
 
 
3.  To find sin 3°, notice that it is equal to sin(18° - 15°).  Calculate this value, using the 

difference formula for the sine (Exercise II, 3), the values for sin 18o and cos 18o from 
Exercise III, and your answers to steps 1 and 2 above.  Use as many decimal places as your 
calculator can handle.   Compare your answer with your calculator’s value for sin 3°.  

 
 
 
 
 
 
 
4.  Use the Pythagorean Identity cos2x + sin2x = 1 to determine the value of cos 3°, again to as 

many decimal places as your calculator will handle.  Compare this value to your calculator’s 
value for cos 3°. 
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5. Since you now know the value for cos 3°, use the half-angle formula for the sine to determine 
sin(3/2°).  Calculate cos(3/2º) by using the Pythagorean identity.  Applying the half-angle 
formula a second time, determine sin 3/4°. Carry out those calculations to as many decimal 
places as your calculator can handle and compare your results with the corresponding values 
of the sine given directly by your calculator.   

 
 
 
 
 
 
 
 
 
6.  Clearly, the value of sin1o lies somewhere between the values of sin(3/4o) and sin (3/2o). 
     We can now approximate sin1° by at least two methods: 
 

a.  First, note that sine is “almost” a linear function for very small values by looking at 
your calculated values for the sines of 3º, 3/2º, and 3/4º.  Use linear interpolation 
between the two points (3/4, sin(3/4o)) and (3/2, sin(3/2o)) to find the second 
coordinate of (1, sin1o). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

b.  Second, use the idea of direct variation.  Not only is the sine function almost linear, 
but it passes through the origin, so it is almost a direct variation.  This means that 

sin
o





 4
3


 o1sin

4
3

≈  and that o1sin
2
3

2
3sin ≈






 .  So, now we have two approximations 

for sin1o, namely 4 3sin
3 4

 
 
 

 and 2 3sin
3 2

 
 
 

.  Using the values calculated in 5, calculate 

these approximations to as many decimal places as your calculator will handle.  Make 
a guess about the value of sin 1o based on the direct variation idea.  You should be 
able to guess a value accurate to six decimal places.  Check this by using your 
calculator to calculate sin 1º directly.   
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7.  Using the above value for the sine of 1º, calculate cos 1º.  Then apply the half-angle formula 
to determine the value of sin (1/2o) very accurately.   Also, calculate cos(1/2º). 

 
 
 
 
 
 
 
8.   In theory, since you know the sine and cosine of 1/2º and 1º, as well as the sines and cosines 

of some other angles, you can use the sum formula for the sine to calculate the values of the 
sine for every angle between 1/2º and 90º in increments of 1/2º.  For example, calculate the 
sine of 16o. 

 
 
 
 
 
 

Ptolemy, probably assisted by many human “calculators”, was able to calculate his entire table 
using essentially the methods you have used. Of course, all the calculations, including square 
roots, were performed by hand.  For this time period, carrying out these computations was a 
monumental effort.  The great accuracy of Ptolemy’s table and its small increment of only 1/2º 
made it the standard for centuries.  
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Answers to Student Exercises 
 
 
Exercise 1: 
 
 1.   ∠ABE = ∠DBC  construction 
  ∠BAE = ∠BDC angles subtend the same arc 
  ∆ABE ~ ∆DBC  AA 
 

 2.   AB AE
DB DC

=   corresponding sides of similar triangles 

   product of means = product of extremes AB DC DB AE⋅ = ⋅
 
 3. ∠ADB = ∠BCA   angles subtend the same arc 
  ∠ABD = ∠EBC ∠ABE = ∠DBC    
     ∠ABE + ∠EBD = ∠DBC + ∠EBD 
     ∠ABD = ∠EBC 
  ∆ABD ~ ∆EBC  AA 
 

 4.   AD DB
EC BC

=   corresponding sides of similar triangles 

   product of means = product of extremes AD BC DB EC⋅ = ⋅
   
 5.    added answers from #2 and #4 AB DC AD BC DB AE DB EC⋅ + ⋅ = ⋅ + ⋅
 

 6.        
( )
( )

( )

AB DC AD BC DB AE EC
AB DC AD BC DB AC or
DB AC AB DC AD BC

⋅ + ⋅ = +
⋅ + ⋅ =

= ⋅ + ⋅
  Since DB and AC are diagonals and AB, BC, DC, and AD are sides, 
  the product of the diagonals of a cyclic quadrilateral equals the 
  sum of the products of the opposite sides. 
   
 7.  a. When a rectangle is inscribed in the circle, a·a + b·b = c·c, thus the 
         Pythagorean Theorem, a2 + b2 = c2 is produced. 
 
     b. When the figure inscribed is an isosceles trapezoid, extend B’B so that 
   the perpendicular from A intersects the extension at A’ and the 
   perpendicular from C intersects at C’.  
  In ∆A’B’A, cosA’B’A = B’A’/B’A =B’A’/a 
  ∠A’B’A = ∠B’AC (alternate interior angle of parallel lines C’A’ and CA) 
  Thus cosB’AC = B’A’/a  or  B’A’ = a·cosB’AC 
  C’A’ = BB’ + 2B’A’ , so  B’A’ = (C’A’ – BB’)/2    
  Substituting, a·cosB’AC = (b – BB’)/2 , or  BB’ = b – 2a·cosB’AC 
  Ptolemy’s Theorem tells us that a·a + b·BB’ = c·c 
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  Substituting for  BB’, we get  a2 + b(b – 2a·cosB’AC) = c2 
  or a2 + b2  – 2ab·cosB’AC = c2 

Since ∠B’AC = ∠BCA, and the latter angle is simply ∠C in ∆ABC, the formula 
simplifies to the more familiar form:  c2 = a2 + b2 –2ab·cosC. 

  If ∠C is a right angle, then AB’BC is a rectangle and we have the  
  Pythagorean Theorem as given in the previous exercise. 
 
 
Exercise 2: 
 
 1.  sin(α + β) = PQ 
      sinα = QR 
      sinβ = PR 
      cosα = SQ/SR = SQ 
      cosβ = SP/SR = SP 
 
      SR·PQ = SQ·PR + QR·SP 
      1sin(α + β) = cosα·sinβ + sinα·cosβ 
      sin(α + β) = sinα·cosβ + cosα·sinβ  
 
 2.  SQ·TR = TS·QR + TQ·SR 
      Since ∆STR is congruent to ∆RPS, TR = SP and TS = RP. 
      cosα·cosβ = sinβ·sinα + cos(α + β)·1 
      cos(α + β) = cosα·cosβ – sinα·sinβ       
 
      cos(α – β) =  cos(α + (–β)) = cosα·cos(–β) – sinα·sin(–β) =cosα·cosβ + sinα·sinβ 
      sin(α – β) =  sin(α + (–β)) = sinα·cos(–β) + cosα·sin(–β) =sinα·cosβ − cosα·sinβ 
 
 
 3.  a.  BD = sinα 
      b.  CD = sinβ 
      c.  AB = cosα 
      d.  AC = cosβ 
      e.  BC = sin(α – β) 
      f.  AD = 1 
      g. BD·AC = AB·CD + BC·AD 
  sinα·cosβ = cosα·sinβ + sin(α − β)·1 
       sin(α − β) = sinα·cosβ – cosα·sinβ 
 
 4.  a.  cos 2α = cos(α + α) = cosαcosα – sinαsinα = cos2α – sin2α 
      b.  cos 2α = cos2α – (1 – cos2α ) = 2 cos2α – 1 
      c.  cos θ = 2cos2(θ/2) – 1;   cos2(θ/2) = (1 + cos θ)/2 
      d.  sin2(θ/2) = (1 – cos θ)/2 
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      e.  1 cos
2 2
θ θ+  = 

 
cos ;  1 cossin

2 2
θ θ−  = 

 
 

     
Exercise 3: 
 
 1.  Since ABCDE is a regular pentagon, arcs AB, BC, CD, DE, EA are all 
      360º/5 = 72º .  Since   ∠ADB intercepts arc AB, its measure is therefore 36º. 
 2.  ∠DAB and ∠DBA intercept arcs DB and DA = 144º, so each measures 72º.  
 3.  ∠ABF = ∠DAB = 72º ;     ∠FAB = ∠ADB = 36º ; so  ∆ABF ~ ∆DAB by AA. 

4.  Since ∆DAB is isosceles and ∆ABF ~ ∆DAB , we know that ∆ABF is also isosceles; 
also, ∠DAF = ∠ADF, so AF = DF and ∆ADF is isosceles. 

 5.  Since ∆ABF is isosceles, AF = AB = 1.  Since ∆ADF is isosceles, DF = AF = AB =1. 
       Also y =AD = DB = DF + FB  and    FB = y – DF = y – 1. 
  

 6.  
1

1
−

=
ysideshort

sidelong
 

 

 7.  
1
y

sideshort
=

sidelong  

 
 8.   Set the right hand side of the equations in #6 and #7 equal:  

  

ratiogoldentheisthisthatnotey

yy
yy

y
y

2
51

01
1

11
1

2

2

+
=

=−−

−=

=
−

 

                 y ≈ 1.618033989 
 9.  Since G is the center of the circle, GA = GB. 
       Also AD = DB 
       Because D and G are both equidistant from A and B, they must lie on the 
          perpendicular bisector of AB.  Thus DH is perpendicular to AB and  
       ∆ADH is a right triangle.  Since  ∠DAH = 72º, we know that ∠ADH = 18º. 
       Therefore, sin18º = AH/AD 
 

 10.      
4

15
51

1

2
51

2
1

2
1

18 −
=

+
=

+
===

yAD
AHsin     

  

11.     3090169944.18sin,3090169944.
4

15
≈≈

−  
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12.    

9510565163.
4

1052
16

52616
16

5261
4

15118cos
2

≈
+

=
+−

=
−

−=






 −
−=  

  
 
Exercise 4: 

 1.     

31 12sin15 2 3 .258819045
2 2

o
−

= = − ≈  

 

 2.     

31 12cos15 2 3 .965925826
2 2

o
+

= = + ≈  

 

 3.      sin 3o = sin18ocos15o – sin15ocos18o= 












 +







 −
−







 +







 −
4

1052
2

32
2

32
4

15  

         =.052335956 
 

4.    cos 3o = 21 (sin 3 ) .998629535o− ≈  
 

5.  sin(3/2o) = 0.026179483; cos(3/2º) = 0.999657325; and  sin(3/4o)= 0.0130895959,   
 

6. a.   Note that sin(3/2º) is very close to half of sin(3º) and sin(3/4º) is even closer to 
half of sin(3/2º).  This shows that the sine is “almost” linear for small values.  So, 
since 1 is 1/3 of the way between 3/4 and 3/2 we choose the number that is 1/3 of 
the way between .0130895959 and .0261779483, which is .01745238. 

 
b.   (4/3)sin(3/4º) = .017452794; (2/3)sin(3/2º) = .017451299.  The average of the two 

values is .017452046.  The values calculated in a. and b. agree to six decimal 
places.  Thus, to that many places, sin 1º =  .017452. 

 

7. First we find ( ) 999848.017452.11sin11cos 22
≈−≈−= oo  

 

Next we find 00872.
2

999848.1
2

1cos1
2
1sin ≈

−
≈

−
=






 oo

 

Finally, cos(1/2º) = .99996. 
             
 8.    sin16o = sin15ocos1o + cos 15osin1o  (.258819)(.999848) (.965926)(.017452)≈ +

           ≈  .275637 
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The Laws of Sines and Cosines 
Brahmagupta’s and Heron’s Theorems 

Teacher Notes 
 
Description of Unit:  The activities in this unit are presented as handouts for students to 
complete individually or in small groups.  The Laws of Sines and Cosines are introduced using 
historical comments and proofs often not found in the traditional mathematics textbook.  The 
Law of Sines is derived using a circumscribed triangle instead of area.  The Law of Cosines 
blends Euclidean proof with current notation.  In each unit, there are also student exercises, 
which may be done, in small groups or for homework.  It is anticipated that problems and 
applications of these theorems will be assigned from the class text. 
 
 The proof of Brahmagupta’s Theorem is presented as supplemental material to review a 
formula that may have been previously studied in a geometry course. The more familiar Heron’s 
formula for area of a triangle follows naturally.  The exercise on these theorems are appropriate 
for homework, extra credit, or small group completion. Initially students are given a general 
outline for the proof. Advanced students might enjoy the challenge of completing their own 
proof. Most students will prefer to follow the steps given.  
 
 
Prerequisites:  The Laws of Sines and Cosines only require the knowledge of basic geometric 
properties and right triangle trigonometry.  
  
 Brahmagupta’s and Heron’s Theorem require knowledge of the Law of Cosines, the 
triangle area formula using sine, and basic trigonometry identities. The detailed proof of 
Brahmagupta’s Theorem is accessible to all students with this basic knowledge.  
 
 
Materials:  It is suggested that students confirm the Law of Sines and Cosines by measuring 
angles and sides of triangles that they have drawn.  Some teachers may prefer to have students 
use ruler and protractor while others who have access to the Geometer’s Sketchpad or similar 
software may prefer using technology. 
 
 If desired, the proof of Euclid’s Book II, Proposition 12 may be accomplished in a whole 
classroom setting by making an overhead slide of the student page.  
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Law of Sines 
Student Pages 

 
You have just finished a unit on how to solve right triangles.  Recall that in order to solve a right 
triangle, two pieces of additional information about the triangle are needed.  What possibilities 
are there for the two additional pieces? 
 
 
 
 
 
 
Note that two additional angles are not sufficient to solve the triangle.  Why not? 
 
 
  
 
Our goal is to solve triangles that do not have a 90º angle.  These are called oblique triangles.    
Again, we are interested in the minimum information that must be given in order to assure us that 
a solution exists and is unique.  Recall the three triangle congruence theorems from geometry.  
What are they? 
 
 
 
 
 
 
 
These three theorems each say that if we know three pieces of information about a triangle, then 
the triangle is completely determined.  In other words, any two triangles with the same three 
pieces of information are congruent.  What we will see is that if we in fact know those three 
pieces of information, we can determine the unknown sides and angles by using one or both of 
the Law of Sines and the Law of Cosines. 
 
Early mathematicians were concerned with solving triangles. Originally, their intent was to learn 
more about the sky above them and its relationship to the earth on which they lived --- thus the 
triangles they studied were often spherical triangles.  But they still needed to solve plane 
triangles, and they worked out versions of the Laws of Sines and Cosines to accomplish this.  
They also worked out similar laws for solving spherical triangles.   These procedures for solving 
both plane and spherical triangles are used, for example, in Ptolemy’s Almagest, written about 
150 CE, but they were probably discovered two or three centuries earlier. 
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We begin with the Law of Sines, which can be used to solve triangles when two angles and one 
side are known.  The Law of Sines states that in any triangle, the three ratios of the sides to the 
sines of the angles opposite are all equal.  That is,  
 

sin sin sin
a b c

A B
= =

C
 

 
Recall your properties of proportions, and you can see that this is equivalent to writing  
    

sin sin sinA B
a b c

= =
C  

 
 
The basic nature of these ratios was known as far back as Ptolemy (c. 85-165) in his study of 
chord lengths.  In his work with a circle of radius r circumscribed about a triangle, 
Brahmagupta  (c. 598-660) found that 2r = a/sinA which also equaled b/sinB and c/sinC.  Abū 
l-Wafā (940-998) systematized much of the existing trigonometry knowledge and developed the 
Law of Sines.   Al-Bīrūnī (973-1048) actually wrote the sine law for plane triangles, and 
translators later brought it to Europe.  If you were to read any of the works of these 
mathematicians, you might not recognize the Law of Sines.  Remember   that theorems were 
written out in words, and the symbols we use today came later in the history of mathematics. 
 
First, let us consider a proof of the Law of Sines that Brahmagupta might have produced over 
1300 years ago.  We ask you to fill in the missing reasons for the various steps in the proof. 
 

A

A’ C

B

O

 
 1.  Given acute triangle ABC, draw the circumscribed circle.  

Euclid would have preferred us construct the circle - how could we have done that     
using only compass and straightedge?   

 
  

 
 2.  Draw a diameter from B intersecting line segment AC.  Name the other endpoint of  

the diameter A'.  
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3. What type of angle is BCA' ? Why?  
 
 

  
4. What angle has the same measure as A' and why?   

   
 
 
 5.  Therefore, sinA = sinA'. 
 
 

6. Using the right triangle A'BC, sinA' is the ratio of which two sides? 
  
 

 7.   Show that your answer to 6 can be rewritten in the form sinA = a /diameter of the 
circle. 

 
 8.  Conclude that a/sinA = 2r, where r is the radius of the circle. 

 
 
9.   The same reasoning can be used to show 2r = b/sinB and c/sinC by drawing a 

diameter from each of the other two vertices of the triangle. 
 
 
 
 10.  Thus we have proved the law of sines: a/sinA = b/sinB = c/sinC 
 
 

 
Exercises: 
 
1.  Most textbooks do not use this proof of the Law of Sines.  More commonly, the proof 

involves the area of a triangle.  Look in your textbook and be prepared to explain that proof 
when you come to class tomorrow. 

 
 
  
2.  Do you really believe in this property of sines?  -  or are you obeying because you are a law-

abiding citizen?  Draw three triangles - one obtuse, one right, and one acute.  Using your 
ruler and protractor, measure the three angles and the three sides of each triangle and 
compare the ratio of length of side divided by the sine of the opposite angle.  Though the 
ratio will be different for each triangle, the three ratios in each triangle would be 
approximately equal.  Hint:  use centimeters and measure very carefully. 

 

 56 



Law of Sines 
Solutions and Teacher Notes 

 
Proof of the Law of Sines: 
 
1.   To construct the center of the circle, construct the perpendicular bisectors of two of the sides 

of the triangle; their intersection will be the center of the circumscribed circle. 
3.   Angle BCA' is a right angle because it is an angle inscribed in a semicircle. 
4.   Angles A and A' have the same measure since they intercept the same arc BC. 
6.   sin A' = BC/ A'B, or side a divided by the diameter of the circle. 
 
Notes on the homework assignment: 
 
1.   In case your text does not include the area proof, one is given below. One of the advantages 

of this proof is that the original triangle can be obtuse, and a most worthwhile formula for 
area is also derived (area = half of the product of two sides and the sine of the angle between 
them), a formula first discussed in the writings of Regiomontanus (1464).  His work De 
triangulis omnimodis was printed in 1533 and it was distributed throughout Europe.   

 

A D

B

h

C

a

b

c

 BD is an altitude (h) of triangle ABC;  sinA = h/c   and   h = c sinA 
 The area of a triangle is one-half base times height, which in this case is ½ bc sinA 
 Using the same reasoning:  sinC = h/a, h = a sinC, the area being ½ ba sinC 
 These two expressions for area must be equal: 

½ bc sinA = ½ ab sinC 
c sinA = a sinC 
a/sinA = c/sinC 

 Similar reasoning using a different altitude shows these ratios also equal to b/sinB. 
 
2.   An alternate assignment would be for students to use Geometer’s Sketchpad or similar 

software to verify the ratios for a triangle.  By dragging a vertex, many triangles can be 
observed. 

  
Further ideas:  Assign problems from the text that students will solve using the Law of Sines.  
These will be triangles with two angles and one side given, though some texts do have problems 
involving two sides and a nonincluded angle before the ambiguous case is introduced.  The 
ambiguous case could be introduced before the assignment is made. 
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Law of Cosines 
Student Pages 

 
As you have seen, the Law of Sines enables us to solve triangles given two angles and a 

side.  We could solve triangles given two sides and the included angle or given three sides by 
drawing an altitude to divide the triangle into two right triangles and then using right triangle 
relationships. Can you explain how?  (Try this with a triangle with sides 10 and 2 and included 
angle 40º and then with a triangle with sides 5, 6, and 7.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 However, wouldn't it be nice to have a formula to express these quantities in one equation 
and thus speed our computation?  Thus the Law of Cosines becomes our next quest.  As was the 
case with the Law of Sines, Ptolemy indeed was able to solve oblique triangles using procedures 
that are equivalent to the Law of Cosines.  They are illustrated throughout the Almagest.  Al-
Bāttānī, one of many Islamic mathematicians involved in trigonometry, demonstrated the Law of 
Cosines for oblique spherical triangles around 920.  Later it was written for plane triangles.  
Many scholars believe that Viete (1540-1603) first wrote the Law, as we know it today. 
 
 We also know that both the Law of Sines and the Law of Cosines were being used 
throughout Europe and Asia by the seventeenth century.   In China, A Treatise on (Astronomy 
and) Calendrical Science was published in 1631 and contained chapters dealing with surveying 
and with trigonometric functions. Trigonometric identities as well as the Law of Sines and Law 
of Cosines were stated - all this "according to the new Western Methods." 
 
 Surprisingly, a version of the Law of Cosines appears in Euclid's Elements Book II, 
Propositions 12 (obtuse triangle) and 13 (acute triangle).  As you will see, the proof depends on 
the Pythagorean Theorem and does not mention the word cosine.  Recall that the Pythagorean 
Theorem states that in a right triangle, the square on the hypotenuse is equal to the sum of the 
squares on the legs.  In stating his theorem and giving his proof, Euclid was dealing with actual 
geometric squares constructed on the two legs and the hypotenuse.  Similarly, in what follows, 
you need to draw appropriate squares and rectangles.  You should also fill in the reasons for each 
step in the space given beside the step. It may be easier if you write out the steps in algebraic 
form. 
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Euclid’s Elements, Book II, Proposition 12:  In obtuse-angled triangles the square on the side 
subtending the obtuse angle is greater than the squares on the sides containing the obtuse angle 
by twice the rectangle contained by one of the sides about the obtuse angle, namely that on 
which the perpendicular falls, and the straight line cut off outside by the perpendicular towards 
the obtuse angle. 
 
Let ABC be an obtuse-angled triangle having the angle BAC obtuse, and let BD be drawn from 
the point B perpendicular to CA produced. 
 
I say that the square on BC is greater than the squares on BA, AC by twice the rectangle 
contained by CA, AD. 
                 
 

B

D A C 
 
 
 
For, since the straight line CD has been cut  
at random at the point A, the square on DC  
is equal to the squares on CA, AD   and  
twice the rectangle contained by CA, AD. 
 
Let the square on DB   be added to each; 
therefore the squares on CD, DB are equal 
to the squares on CA, AD, DB, and twice 
the rectangle CA, AD. 
 
 
But the square on CB is equal to the squares 
on CD, DB, for the angle at D is right; and the  
square on AB is equal to the squares on AD, DB; 
 
 
Therefore the square on CB is equal to the squares on CA, AB and twice the rectangle contained 
by CA, AD ; 
So that the square on CB is greater than the squares on  CA, AB  by twice the rectangle contained 
by  CA, AD 
 

Q.E.D. 
 

 59 



But what happened to the cosine?  We are studying the Law of Cosines and the word is not even 
used in the statement of the proposition.  Besides, the formula we will learn has a subtraction 
sign, not an addition sign.  Let us look again at what we have done: 
 
Redraw the triangle and label the sides with the lower case letters of the angles opposite them 
(just like we did with the Pythagorean Theorem). 
 
 

 

B

D A Cb

c
a

        
  CB  becomes  2 2 2 2CA AB CA AD= + + ⋅ 2 2 2 2a b c b AD= + + ⋅
 

Now Euclid did not use trigonometric functions, but we can.  Look at triangle ADB.   
What is cos DAB? ∠

We can rewrite that statement as AD = c cos∠ DAB.   
Now, ∠ DAB is the supplement of ∠ CAB, and the cosines of supplementary angles are opposite 
in sign,  
Therefore, cos∠ DAB = - cos∠ CAB.   
Substituting, we get that AD = -c cos CAB.  We conclude that ∠

2 2 2 2 cosa b c bc CA= + − ∠  B  A or, ignoring triangle ADB, . 2 2 2 2 cosa b c bc= + −
How would you write the formula if C were the obtuse angle? 
 
 
What about if B were the obtuse angle? 
 
 
What happens to the Law of Cosines if ∠ C is a right angle? 
 
 
In the Book II, Proposition 13 Euclid gave an analogous result for acute-angled triangles: 
 
In acute-angled triangles the square on the side subtending the acute angle is less than the 
squares on the sides containing the acute angle by twice the rectangle contained by one of the 
sides about the acute angle, namely that on which the perpendicular fall, and the straight line cut 
off within by the perpendicular towards to the acute angle. 
 
Give a proof of this result modeled on the proof of Proposition 12.  Then translate this result into 
a result using cosines similar to the results given above for Proposition 12. 
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Law of Cosines 
Solutions and Teacher Notes 

   
Here is the complete proof of Proposition II, 12, with completed diagram and algebraic 
equivalents: 
 
In obtuse-angled triangles the square on the side subtending the obtuse angle is greater than the 
squares on the sides containing the obtuse angle by twice the rectangle contained by one of the 
sides about the obtuse angle, namely that on which the perpendicular falls, and the straight line 
cut off outside by the perpendicular towards the obtuse angle. 
 
Let ABC be an obtuse-angled triangle having the angle BAC obtuse, and let BD be drawn from 
the point B perpendicular to CA produced. 
 
I say that the square on BC is greater than the squares on BA, AC by twice the rectangle 
contained by CA, AD. 
 

        

B

D A

CA 2

CA·ADAD 2

CA·AD

C

 
 
                   
For, since the straight line CD has been cut   CD2 = CA2 + AD2 + 2 CA•AD 
at random at the point A, the square on DC          [this is algebraically equivalent to 
is equal to the squares on CA, AD and           (a+b)2 = a2 + 2ab + b2] 
twice the rectangle contained by CA, AD . 
 
 
 
Let the square on DB be added to each;          CD2 + DB2  = 
therefore the squares on CD, DB  are equal        CA2 + AD2 + 2CA•AD + DB2 
to the squares on CA, AD, DB, and twice        [note: DB2 is the square on the other leg 
the rectangle CA, AD.     of right triangle BDC]  
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But the square on CB is equal to the squares   CB2 = CD2 + DB2 
on CD, DB, for the angle at D is right; and the   AB2 = AD2 + DB2 
square on AB is equal to the squares on AD, DB;                [Pythagorean Theorem using 
        triangles BDC and ADB] 
   
Therefore the square on CB is equal to   CB2 = CA2 + AB2 + 2CA•AD  
the squares on CA, AB and      [substitution] 
twice the rectangle contained by CA, AD; 
 
 
So that the square on CB is greater than the squares on CA, AB by twice the rectangle contained 
by CA, AD 
 
 

Q.E.D. 
 
 
Answers to the discussion about cosine: 
 
If C is the obtuse angle, then the formula becomes . 2 2 2 2 cosc a b ab C= + −

2 2 2 2 cosb a c ac B= + −If B is the obtuse angle, then the formula becomes . 
If C is a right angle, the law of cosines reduces to the Pythagorean Theorem. 
 
A complete proof of Book II, Proposition 13 is given below: 
 
In acute angled triangles the square on the side subtending the acute angle is less than the 
squares on the sides containing the acute angle by twice the rectangle contained by one of the 
sides about the acute angle, namely that on which the perpendicular falls, and the straight line 
cut off within by the perpendicular towards the acute angle. 
 
Let ABC be an acute-angled triangle having the angle at B acute, and let AD be drawn from the 
point A perpendicular to BC ; 
 
I say that the square on AC is less than the squares on CB, BA by twice the rectangle  
contained by  CB, BD . 
 
For, since the straight line CB  has been cut at random at D , the squares on CB, BD  are equal to 
twice the rectangle contained by  CB, BD  and the  
square on  DC . 
           CB2 + DB2  =  2CB•BD + DC2    
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A

B C

DC2

CD·DB

CD·DB

DB2

 
 It helps to label congruent segments to see that CB2 is composed of DB2 + 2CD•DB + CD2 : 
 a large square, a small square, and two congruent  rectangles.  When another large square (DC2) 
is added, there are now two large squares that, when added to the two rectangles, produce two 
rectangles CB by DB.  Small square DC2 remains. 
 
Let the square on DA be added to each; 
therefore the squares on  CB, BD, DA are equal to twice the rectangle contained by  CB, BD   and 
the squares on AD, DC . 
 

DA2 + CB2 + DB2  =  2 CB•BD + DC2 + AD2 
 
But the square on AB is equal to the squares on  BD, DA ,  for the angle at D  is right; 
and the square on AC  is equal to the squares on  AD, DC ; 

 
AB2  =  BD2 + DA2        and        AC2  =  AD2 + DC2 

 
therefore the squares on CB, BA  are equal to the square on AC and twice the rectangle CB, BD , 

 
CB2 + BA2  =  AC2 + 2 CB•BD 

 
so that the square on AC  alone is less than the squares on CB, BA  by twice the rectangle 
contained by  CB, BD . 

AC2  =  CB2 + BA2 - 2 CB•BD 
 
 

Q.E.D. 
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 Again, moving to modern notation, using lower case letters for the sides of the triangle, 
the above conclusion could be rewritten as 

b2  =  a2 + c2 – 2a BD 
cos B = BD/c  and therefore  BD = c cos B 
 By substitution,  b a . 2 2 2 2 cosc ac= + − B

 
Analogous expressions can be obtained for the squares on the other two sides. 

 
 
 

 If you (or your school) do not have access to a copy of The Elements, it is recommended 
that you purchase the translation, with commentary, by Thomas Heath.  Some editions do not 
have Heath's explanations of Euclid's proofs.  The discussion following each proposition helps 
the reader understand some of Euclid's statements and make reference to the works of other 
mathematicians. 
 
 As with the Law of Sines, there is probably a different proof in your text that you will 
want students to review either in class or for homework.  Again, they can verify the Law of 
Cosines by drawing triangles and measuring or by using Geometer’s Sketchpad.  There is an 
interesting internet site that uses animation and area to illustrate this theorem.  The address is: 

http:www.edc.org/LTT/ConnGeo/cosines.html. 
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Brahmagupta's and Heron's Theorems 
Student Pages 

 
 

 In your geometry class, you may have learned Heron's formula (also referred to as Hero's 
formula) for calculating the area of a triangle from the lengths of its sides (Heron of Alexandria 
lived in the first century). There is a similar formula due to for calculating the area of a cyclic 
quadrilateral in terms of its sides.  You may recognize Brahmagupta's name (born in India in 
598) from the discussion of the Law of Sines and other work he did in trigonometry.  Like other 
mathematicians of India he left no proof of his work, only algorithms for solving problems. The 
proof outlined below, one of many possible, is for you to complete as an exercise.  You will 
apply important trigonometry – the Law of Cosines, Law of Sines, and several trigonometric 
identities. You will also use quite a bit of algebra, which may seem tedious at times, but then 
mathematics sometimes does require detail, exactness, and care. 
 
 Though he probably discovered his area property independently of Heron, 
Brahmagupta’s Theorem has been called a generalization of Heron's Theorem. However, Heron's 
Theorem has also been called a special case of Brahmagupta's Theorem.  Regardless, it is a gem.  
The appeal of beauty is what drives certain people deeper into mathematical activity.  The thrill 
of discovering new relationships, which connect algebra and geometry, is exciting.  
Brahmagupta seems to have played with a great deal of beautiful mathematics that did not 
directly apply to his regular job as an astronomer. This should be no surprise since he titled his 
astronomical work The Opening of the Universe and wrote it in poetic stanzas. 
 
 The following exercise leads you step by step through the proof of Brahmagupta's 
formula for the area of a cyclic quadrilateral.  Some of you may prefer to generate the proof on 
your own. A general outline is given above the diagram. These comments will also help you see 
the "big picture" rather than get caught up in details. See how far you can go on your own before 
looking at the numbered steps. If you prefer, follow the more specific procedure given below the 
diagram. 
 
 Keep in mind that the formula is not valid for any quadrilateral - only those that are 
cyclic. The vertices of the quadrilateral must be shown to lie on the circumference of a circle. 
One method is to show that opposite angles are supplementary. 
 
 Enjoy your excursion through the proof of Brahmagupta's Theorem. 
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Brahmagupta's Theorem: 

 
 Let P, Q, R, S be points on a circle, lettered in clockwise order, and let a, b, c, and d be the 
lengths of the sides of quadrilateral PQRS as shown. Then the area A of quadrilateral PQRS is 

( )( )( )(s a s b s c s d− − − − ) , where s is the semi perimeter (a+b+c+d)/2. 
 
 
General Outline of Proof: 
 

 
 
Find an equation relating a, b, c, d, θ, and π – θ by first using the Law of Cosines on triangles 
PQR and RSP. 
 
To find the area of quadrilateral PQRS, find the areas of triangles PQR and RSP and add them. 
 
Find a substitution that will enable the area equation to be written in terms of cosine rather than 
sine (since you already have an equation for cos θ in terms of a, b, c, d) 
 
Substitute your formula for cos θ then do lots of algebra to cajole the equation into the form 
Brahmagupta used. 
 
Proof: 
 
Begin with linking triangles PQR and RSP through trigonometry. First, since PR = t is the 
common side, apply the Law of Cosines to express t2 two different ways. Simplify cos(π - θ) 
in terms of cos θ.  Soon your proof will need a substitution for cos θ.  Right now is a good 
time to set the two t2 expressions equal to each other and solve for cos θ.       [Steps 1 - 4] 
 
If  ∠PQR = θ, then, as pictured, ∠ RSP = π – θ since an angle inscribed in a circle equals half its 
intercepted arc and arcs PQR and RSP total 2π. 
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1.   Apply the Law of Cosines to triangle PQR to express t2 (t  = PR)  in terms of a, b, 
      and cos θ. 
 
 
2.   Apply the Law of Cosines to triangle RSP to express t2 in terms of c, d, and cos(π – θ). 
 
 
 
3.   Rewrite your answer to #2, using the identity cos θ = -cos(π – θ) 
 
 
 
4.   Since the expressions in #1 and #2 are both equal to t2, set them equal to each other and then 

solve for cos θ in terms of a, b, c, and d. 
 
 
 
 
 
The second link between the triangles is that together they make up the cyclic 
quadrilateral.  Express each area is terms of sine; simplify sin(π – θ) in terms of sin θ. 
Recall that A represents the area of quadrilateral PQRS.  Write A as a sum of the two 
triangular areas.      [Step 5]   
 
5.   The area of triangle PQR is ½ absin θ.  Why?  The area of triangle RSP is ½ cdsin(π – θ).     
      Add the two areas, use the fact that sinθ = sin(π – θ) to express A, the area of PQRS, in terms  
      of a, b, c, d, and sin θ. 
 
 
  
 
  
 
 
 
Naturally you are wondering why the statement of Brahmagupta's Theorem contains no 
trigonometric functions. Here is where the cosine and sine functions are eliminated.  
[Steps 6 - 8] 
 
6.   Square your answer from #5 but do not carry out the multiplication on the right side of the 

equation 
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7.   Substitute  (1 - cos2 θ) for sin2 θ. 
 
 
 
8.   In your answer to #7, substitute your expression for cos θ from #4. 
 
 
 
 
 
In algebra you learned how to simplify a compound fraction. Do it now.  You will end up 
with an equation having 16A2 on one side (the left side, please).  After all, the purpose here 
is to eliminate fractions.  The right side is special in that it contains several expressions that 
are the difference of two squares. [Steps 9-14] 
 
9.   Fill in the blanks, using a common denominator in the square bracket: 
 
         
 
 

( )








+

−−+−++
= 2

222
2

)(4
)()(4

4
cdabA  

 
 
 
 
10.   Multiply by 16 and cancel factors of (ab+cd)2.  Fill in the blanks with your answers: 
    
 

16A2 = 4(        +        )
2  -  (        +          -           -        )2 

 
 
 
11. Factor the expression on the right hand side in #10 as a difference of squares, using the form   
        to fill in the blanks.  2 2 ( )(x y x y x y− = − + )
 

 16A2  =  [2(      +      )+ (      +       -       -      )] [2(      +      )  -  (      +        -        -      )] 
 

 
 
12.  In each square bracket, group the terms with a and b in one set of parentheses and those  
         with c and d in the other. 
 

16A2  =  [(      +        +      )  -  (       -        +       )] [(     +        +      )  -  (      -        +      )] 
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13. Rewrite your answer to #12, expressing the terms in each set of parentheses as the square of 
        a binomial. 
 
       16A2  =  [(      +      )2  -  (      -      )2] [(      +     )2  -  (      -      )2] 

 
 

 
14.   Factor the expression in each square bracket from #13 as a difference of squares 
        using the form  to fill in the blanks. 2 2 ( )(x y x y x y− = − + )
 

   16A2  =  [(    +    ) + (    -    )] [(    +    ) - (    -    )] [(    +    ) + (    -    )] [(    +     ) - (    -    )] 
 
 
 
 
Now we figure out what all this has to do with the semiperimeter.  [Steps 15 - 17] 
  
 
15.   Note that  (a + b + c + d)  is the perimeter of PQRS. However each expression  
        inside a bracket in #14 unfortunately has a single negative term.  
        What can be done to turn (a + b + c – d) into (a + b + c + d)? 
        Rewrite (a + b + c – d)  as  (a + b + c + d – 2d)  =  perimeter – 2d. 
        Now you write the remaining three expression (from the brackets in #14) so 
        that each contains the perimeter of quadrilateral PQRS: 
 
     a + b – c + d  =  perimeter  – ? 
     a – b + c + d  =  perimeter  – ? 
   –a + b + c + d  =  perimeter  – ? 
 
 
16.   Brahmagupta's Formula uses the semiperimeter (s) rather than the perimeter, so replace the     
        perimeter with 2s: 
 
   perimeter – 2d  =  2s – 2d  =  2(s – d)  
   perimeter – 2c  = 
   perimeter – 2b  = 
   perimeter – 2a  = 
    
 
17.   Substitute your final expressions from #16 into the equation from #14. 
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The final step ! 
 
18.  Divide by 16 and take the positive square root. 
 
 
 
 
 
 

AHA!!   Brahmagupta's Formula appears! 
    
 
 
Now, how about Heron's Formula?   
 
Heron's formula is for the area of a triangle; Brahmagupta's for a quadrilateral.  
A quadrilateral has four sides, a triangle only three.  So simply let d = 0.    
Presto, a triangle with area =  
 
Heron included this formula in Metrika, one of several practical mathematics books he wrote in 
the first century C.E. The astronomer/mathematician al-Bīrūnī (973-1055) wrote that 
Archimedes knew of Heron's formula some three centuries before Heron.  However, much of 
Archimedes' work is lost, so there is no evidence at this time to support or refute al-Bīrūnī's 
claim. 
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Answers to the Proof of Brahmagupta’s Theorem 
 
 
 
1.     t  2 = a2 + b2 − 2abcosθ
 
 
2.    t  2 = c2 + d2 − 2cd cos(π −θ )
 
 
3.    t  2 = c2 + d2 + 2cd cosθ
 
 
4.    a  2 + b2 − 2ab cosθ = c2 + d2 + 2cd cosθ
               

 
cosθ =

a2 + b2 − c2 − d2

2(ab + cd )  
 
 

5.     A = absinθ
2

+ cd sinθ
2

= (ab + cd)
2

⋅sinθ  

 
 

6.     A2 =
(ab + cd)2

4
⋅sin2 θ  

 
 

7.     A2 =
(ab + cd)2

4
⋅(1 − cos2 θ ) 

 
 

8.      A2 =
(ab + cd)2

4
⋅ 1 −

a2 + b2 − c2 − d2

2(ab + cd)

 

 
  

 

 
  

2 

 
 
 

 

 


 
  

 
 

9.     A2 =
(ab + cd)2

4
⋅

4(ab + cd)2 − (a2 + b2 − c2 − d2 )2

4(ab + cd)2

 

 
 
 

 

 
 
  

 
 
10.     16  A2 = 4(ab + cd )2 − (a2 + b2 − c2 − d2 )2
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11.   16  A2 = 2(ab + cd) + (a2 + b2 − c2 − d2 )[ ]2(ab + cd ) − (a2 + b2 − c2 − d2[ ]
 
 
12.    16A2 = a2 + 2ab + b2( )− c2 − 2cd + d2( )[ ] c2 + 2cd + d2( )− a2 − 2ab + b2( )[ ] 
 
 
13.    16A2 = a + b( )2 − c − d( )2[ ] c + d( )2 − a − b( )2[ ] 
 
 
14.    16  A2 = a + b( )+ c − d( )[ ] a + b( ) − c − d( )[ ] c + d( )+ a − b( )[ ] c + d( )− a − b( )[ ]
 
 
15. perimeter – 2c 
 perimeter – 2b 
 perimeter – 2a 
 
 
16.   2s – 2c = 2(s – c) 
 2s – 2d = 2(s – b) 
 2s – 2a = 2(s – a) 
 
 
17.      16  A2 = 2(s − d)[ ] 2(s − c)[ ] 2(s − b)[ ] 2(s − a)[ ]
 
 
18.     A = (s − a)(s − b)(s − c)(s − d)  
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Charting the Heavens 
Teacher Notes 

 
Description of Unit:  In this unit we demonstrate how the early astronomers used simple plane 
trigonometry to determine distances,  times and orbits of the major bodies in our solar system. 
  
 The highlights of their efforts are: 
  Finding the distance from the moon to the earth. 
  Finding the distance from the sun to the earth. 
  Finding the circumference of the earth. 
  Finding the radii of the moon and the sun. 
  Finding the distances from Venus and Mercury to the sun. 
  Finding the distances from Mars and the outer planets to the sun. 
  Finding the length of time of a Martian year. 
 
 Each highlight is written as a student page with historical comments and directions for 
duplicating the calculations.  Accompanying each of the student pages is a page of notes for the 
teacher, with additional historical information, relevant additional sources, and the completed 
calculations. 
 
Prerequisites:  Many of the student pages involve nothing more difficult than right triangle 
trigonometry and can be used as soon as that topic appears in the curriculum.  It has been 
successfully tested with second semester Geometry students as well as first semester 
Trigonometry students.  The only section, which requires the Law of  Sines or Cosines is the one, 
titled The Distance from Mars to the Sun. 
 
Materials:   

1.   A scientific calculator.  
 Some optional materials might include 
 2.   A flashlight and a few spheres, to illustrate the sun/moon/earth right triangle. 
 3.   Geometer’s Sketchpad to illustrate the point that the orbit of Venus produces a right 
                  angle at Venus, when that planet appears to be farthest from the sun. 

4. Geometer’s Sketchpad to help visualize the simultaneous orbiting of Mars and the  
      earth, in the section on determining the length of a Martian year. 
5. An almanac or similar resource to independently verify student work. 
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Charting the Heavens 
Student Pages 

 
 A single person did not develop trigonometry, nor by a single civilization, and contrary to 
the implication of many modern textbooks, it was not developed primarily to find heights of 
mountains, distances to shores, or boundaries of nations.  The primary driving force behind the 
creation of this beautiful piece of mathematics was to conquer or tame the heavens. 
 
 Regardless of its location on the earth, each civilization was able to observe the sun, the 
moon, and various constellations, all moving in an intricate dance in the sky.  People were able 
to determine that the movements of the sun and moon were related to a wide variety of terrestrial 
phenomena, such as tides, hot or cold weather, planting seasons, menstrual cycles, availability of 
wild animals for food, and number of daylight hours in a 24 hour period.  To understand and be 
able to predict the motions of the heavenly bodies meant to be able to make predictions about 
those corresponding matters on earth, which enabled people to be able to take precautions and 
make preparations to better insure survival.  Seen in this way, charting the heavens was a life-or-
death issue. 
 
 A particular puzzle for those societies was the path of "wandering stars,” now known as 
planets.  The sun's trip was relatively predictable.  It rose in almost the same place each morning, 
set in almost the same place each evening, and traveled almost the same path each day.  The 
moon's trip was only slightly more difficult to chart.  Most of the stars exhibited only a rotation 
about some fixed place in the heavens.  But some stars exhibited an erratic behavior.  They 
would seem to stop and reverse direction mid-path.  Their journey was out of character with the 
rest of the heavens and naturally piqued the interest of the ancient mathematicians.  Note the 
absence of the phrase  "ancient astronomers.”  Someone with training in the mathematical arts of 
that society was naturally expected to bend those talents to this most serious endeavor, that of 
making sense of the heavenly movements.  Mathematicians were astronomers.  In this unit we 
look at seven highlights of their efforts. 
 
  The distance from the moon to the earth 
  The distance from the sun to the earth 
  The circumference of the earth 
  The radii of the moon and the sun 
  The distance from Venus and Mercury to the sun 
  The distance from Mars and the outer planets to the sun 
  The length in days of the Martian year 
  
 
 For a complete index of mathematicians and a further overview of astronomy, here is a 
good website. 
 
  www-history.mcs.st-and.ac.uk/history/ 
   Accessed June 27, 2001 
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The Distance from the Moon to the Earth 
Hipparchus (190 - 120 B.C.) 

 

M(oon)C

H(ipparchus)

J(oe)

  
 
 Suppose Hipparchus and Joe are standing at two spots on the earth from which the moon 
is visible at the same time, Hipparchus at a location in which the moon is on the horizon and Joe 
at a place where the moon is directly overhead. 
 
 Imagine a triangle connecting Hipparchus, the moon, and the center of the earth.  This 
triangle will be a right triangle, whose hypotenuse contains Joe.  If the distance between Joe and 
Hipparchus is found (length of arc JH, suppose it to be 6218 miles) and the radius of the earth be 
known (it is 4000 miles), then the measure of the arc JH (and the central angle) may be 
determined.  Find this value. 
         Arc JH = _________ 
 
 

The central angle HCJ cut off by arc JH is an angle of the right triangle CHM, and since 
the short leg of the triangle (CH, radius of earth) is known, the length of the hypotenuse may be 
determined using the cosine of ∠ HCJ.  Find that length. 

                    Length of Segment CM= _______ 
 
 The distance from the moon to the earth is that length minus the radius CJ of the earth.  

What is your calculation for the distance between the earth and the moon? 
       Distance = _____________ 

 
 A minor problem to consider.  Since the moon is constantly in motion, if the moon is 
determined to be on the horizon for Hipparchus and directly above for Joe, but at different times, 
we have different triangles.  It was required that these observations be made at the same time.  In 
our present age, we could simply arrange for simultaneous measurements by either 
synchronizing our watches or conversing by cell phone.  However neither of those options was 
available to Hipparchus.  Instead, he utilized a time when the moon would make a grand 
simultaneous signal to everyone on the earth….an eclipse.  Pretty clever, huh? 
  
 We now know the distance to the moon to within 5 cm because Apollos 11, 14, and 15 
dropped off mirrors on the surface.  Now we just shoot a laser to the mirrors and measure the 
time it takes to return.  See http://nssdc.gsfc.nasa.gov/cgi-bin/database/www-nmc?69-059C-04.   
Accessed June 27, 2001.  Also, a nice website on Hipparchus' work finding the distances to the 
moon and to the sun can be found at http://spaceboy.nasda.go.jp/note/shikumi/e/Shi08_e.html  
Accessed June 27, 2001. 
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Distance from Moon to Earth 
Teacher Notes 

 
Answers to the exercises are: 
  Arc JH = 89.066o 

Length of Segment CM= 245389 
  Distance= 241389   
 
An alternative way to discover the distance would be to break the students into groups and assign 
each group a different value for the length of arc HJ. 
 

Here is a table of the corresponding values of CM for various HJ. 
 
HJ 6000     6050         6100         6150         6200         6250         6300 
 
Angle 
C 85.94     86.66       87.38         88.09        88.81        89.52       90.24 
 
CM      56.547    68.653     87.373     120,155    192,355    482,146          ? 
 
JM     52,547   64,653     83,373      116,155    188,355    478,146          ? 
 
 
 

From the table above, you can see that in order to have determined that the distance from 
the earth to the moon is 240,000 miles, the length of arc HJ must be somewhere between 6200 
miles and 6250 miles.  This might be an appropriate time to ask the class to determine the value 
of arc HJ which will produce the correct distance. 
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Distance from the Sun to the Earth 
Aristarchus (310- 230 B.C.) 

Student Page 
 

 At certain times of the month, the moon appears to be neither a full moon nor a slim 
crescent, but to be half illuminated and half in shadow.  At such a time, its center forms the 
vertex of a right angle whose rays extend through the centers of the sun and earth.   

  

E(arth)

M(oon)S(un)

 
 If, at such a time, the sun is also visible from the earth, then the angle SEM may be 
measured.  Suppose it to be 87 degrees, the value stated by Aristarchus.  Aristarchus could then 
determine by a geometrical method the ratio of the distance of the sun to the earth to the distance 
of the moon to the earth.  Calculate this ratio via trigonometry, a method not yet invented in the 
time of Aristarchus. 
      Ratio of SE to ME_____________________ 
 
 If the distance from the earth to the moon is known (about 240,000 miles), then you can 
calculate the actual distance from the earth to the sun.  Find that distance.  
      Distance from earth to sun= ___________ 
 
 
 Some minor problems to consider.  First, the angle SEM will be very nearly 90 degrees. 
(Aristarchus claimed it was 87 degrees.)  Consequently, minor errors in its measurement will 
have severe repercussions in the distances determined, since the tangents of angles grow rapidly 
as the angles approach 90 degrees.  Also, if the sun is close to the horizon, the path of light, SE, 
will be bent, making the apparent measurement inaccurate.  Determining exactly WHEN the 
moon is exactly half illuminated is also subject to error, leading to more potential inaccuracies.   
 
 Note that in order to find the distance to the sun, it is required that we know the distance 
to the moon.  Earlier we noted that to find the distance to the moon it was required to know the 
radius of the earth.   Since knowing the radius of the earth was critical to determining the 
distances to the sum and moon, that became an even more significant question, one that was first 
solved by Eratosthenes in about 200 BCE. 
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Distance from the Sun to the Earth 
Teacher Notes 

 
 Aristarchus asserted that angle SEM was 87 degrees.  It follows that the ratio of SE to ME 
is the secant of 87 degrees, or about 19.1.  If we then know that the distance from the earth to the 
moon is 240,000 miles, it follows that SE, the distance from the sun to the earth, is 
approximately 4.6 million miles.  
 
 Angle SEM is in fact about 89.85 degrees.  This gives a strikingly larger answer for the 
distance from the sun to the earth.  This indicates the tremendous importance that accurate 
measurement played in the resulting theories about the heavens. 
 
  SE:ME = sec(89.85º) = 381.97.  ……… SE = 91.7 million miles 
 
 Note that neither of these results depends on knowing whether the earth revolves about 
the sun or the sun about the earth.  The Greek world was split over this issue.  Ptolemy and 
Aristotle led the geocentric (earth center) approach, while Hipparchus, Aristarchus, and 
Eratosthenes all favored the heliocentric (sun center) approach.  The public popularity of 
Ptolemy and Aristotle, together with the lack of any evidence of the earth’s motion, persuaded 
much of the scientific community to side with the geocentric approach.  It was not until the 
seventeenth century that Kepler and Galileo were able to persuade astronomers, and ultimately 
the public, that the earth traveled around the sun, although Copernicus asserted this in a major 
astronomical work in 1545. 
  
 Both of the Greek factions were aware, however, that the earth was spherical and not flat.  
Texts that suggest that the flat earth theory was still in vogue among the scientific community at 
the time of Columbus are in error. 
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The Circumference of the Earth 
Eratosthenes (280 – 195 B.C.) 

Student Page 
 

 The Greeks had observed that in the town of Syene in Egypt, water at the bottom of a 
very deep well within the city limits reflected the sun at noon on the longest day of the year.  
That meant that the sun was directly overhead at that time. In the diagram below, this means that 
C, S, and F are collinear.  Eratosthenes exploited this occurrence to determine the circumference 
of the earth.  In Alexandria, where he lived, he erected a pole (AB) perpendicular to the earth’s 
surface on that same longest day.  He then measured the lengths of the shadows at various times 
of the day (AD).  Since he had no wristwatch to tell him when noon was, he determined this by 
finding the time of the shortest shadow.  
 

 

Earth 

P(olar axis) 

G 
E 

B 

F 
A(lexandria) 

C S(yene) 

D 

Sun ----

 By knowing the length of that shortest shadow and the height of his pole, he was able to 
determine that the angle BAE (= angle DBA) was equal to 1/50 of 360 degrees, namely 7 1/5 
degrees.  It followed that angle ACS was also 7 1/5 degrees.  Thus arc AS on the sphere of the 
earth had the same measure. By knowing that the distance between Syene and Alexandria was 
5000 stades, Eratosthenes was able to determine the circumference of the earth.  What value did 
he get? 
 
     Circumference of the earth=______________ 
 
 There is one minor problem to consider, from our modern perspective.  How long is a 
stade?  Unfortunately, there are several different stades from ancient times.  We do not know 
which definition Eratosthenes used.  However, we do know the modern distance between 
Alexandria and Syene, which is now underwater as part of the Aswan Dam Project.  This 
distance is 493 miles, so we can rework the problem using these modern units of measurement.  
What value do you get this way?  
 

 _________________________  
 

 
 For a great website on this experiment, including information about subsequent attempts 
to refine Eratosthenes' answer, go to the following website: 
www.eso.org/outreach/spec-prog/aol/market/collaboration/erathostenes/  
Accessed June 27, 2001. 
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The Circumference of the Earth 
Teacher Notes 

 
 To determine the circumference in the last step, the student must solve the proportion  
below. 

 
17 5000stades5

360 circumference
=  

 
 

This yields an estimated circumference of 250,000 stades.  Although we do not know for 
sure which of the many types of stades was used for this measurement, one of the common 
choices for that length corresponds to about one tenth of our mile.  This choice would provide us 
with a circumference of 25,000 miles and therefore with the radius of the earth about 3980 miles.  
The student problem using the value of 493 miles yields a polar circumference of 24,650 miles 
and therefore a polar radius of about 7846 miles. (We use the phrase "polar" as a reminder that 
the shape of the earth is not truly spherical, but flattened at the poles). 

   
 These values for the radius and circumference of the earth are quite accurate, and it is 
unfortunate and historically significant that a second value, about 25% less, pre-empted the value 
found here by Eratosthenes.  Poseidonius (130 - 51 BCE) used a similar technique, measuring 
the change in a star’s elevation above the horizon at both Rhodes and Alexandria. Although the 
angle measured was of reasonable accuracy, the distance between the cities was taken to be 
about 375 miles by a reporting geographer, Strabo.   The distance is actually about 500 miles.  
Since this incorrect distance is about 25% less than the true distance, it yielded a circumference 
that is also about 25% less than the correct one.  The historical significance of this popularly 
accepted but erroneous value is that Columbus believed Strabo's calculations were accurate.  He 
used this smaller circumference value, as well as an erroneous notion of the extent to the Asian 
continent,  to contend that sailing west from Spain to the Indies was feasible.  How could such a 
large error have been made in the distance between Rhodes and Alexandria?  They were 
separated by the Mediterranean rather than by land, and distances across water were extremely 
difficult to measure accurately at this time. 
 
 Today, we usually use the rough version of 4000 miles for the radius of the earth, 
remembering that not all earth radii are alike.  The shape of the earth is called "an oblate 
spheroid", indicating that the great circle at the equator is larger than the great circles through the 
poles.   How did people verify that the shape was not spherical? A surveying crew went out and 
measured one degree of longitude at two different latitudes, and reached statistically significantly 
different results.  More about that can be found in the website below: 
http://www-history.mcs.st-and.ac.uk/history/ Accessed June 27, 2001 
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The Radii of the Moon and Sun 
Aristarchus (310-230 B.C.) Hipparchus (190-120 B.C.) 

Student Page 
 

 It is fortuitous for mathematicians that during a total eclipse of the sun, the moon 
completely covers the solar disk, but just barely.  The angle from the top of the disk to the eye to 
the bottom of the disk is about 1/2 degree (so angle BAC is about 1/4 of a degree), although 
Aristarchus significantly overestimated it to be about 2 degrees.  Since the sun and moon look 
the same size from the earth, the ratio of their actual diameters must be the same as the ratio of 
their distances from the earth.  This is because triangles ABC and AEG are similar, so that the 
ratio of BC to EG equals the ratio of AC to AG. 
 
 This was the contribution of Aristarchus, tying the radius of each sphere to its distance 
from the earth in a direct proportion. 

Sun

Moon
Earth

B E

GCA

H

D

 To find the radius of the moon, consider the right triangle ABC.  Let's amend 
Aristarchus's measurement of angle BAC to be 1/4 of a degree.  If the distance from the earth to 
the moon is known, which Hipparchus was finally able to do in about 140 BC (see the handout 
on distance from the moon to the earth), enough information about the right triangle is known to 
find the missing sides and angles.  Use the value of 240,000 miles for the distance from the earth 
to the moon and determine the radius BC of the moon. 
      Radius of the Moon=_______________ 
 
There is a minor problem.  Is the distance from the earth to the moon given by AD or by AC?  
According to Hipparchus, who used the eclipse of the moon to signal when to make the 
measurements, the distance should be AD.  This makes for a slightly more complicated algebra 
problem.  Use the value you did not use in the first part to recalculate the radius of the moon. 
      New value for Radius of Moon__________ 
 
 Good news.  Did you discover that the two answers for the radius of the moon differ by 
less than 1/2% ?  Since Hipparchus was not able to obtain nearly that accuracy in his distance 
from the earth to the moon, hindsight says that we could have chosen the easier equation.  
Nowadays, we know the distance to the surface of the moon to within 5 cm, because one of the 
Apollo missions dropped off a mirror on the surface, and we just shoot a laser beam to the mirror 
and record the time it takes to reflect back.  See the handout on distance to the moon for a great 
website on the subject.   
 
 The distance from the earth to the sun is about 93,000,000 miles.  What is the radius of 
the sun? _______________________ 
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The Radii of the Moon and the Sun 
Teacher Notes 

 
Concerning which distance to the moon we should use, AC or AD. 
 
Let us use 240,000 miles for the distance AD and see what value that gives for the radius of the 
moon. 
 

First solve the equation )
4
1sin(

000,240
=

+r
r  where the angle is in degrees, to find the radius of 

the moon.  This gives a radius of about 1051 miles. 
 
If we consider 240,000 to be the distance AC, the slightly easier equation to solve is 

4
1sin

000,240
=

r .      This gives a radius of about 1047 miles. 

 
Pretty close.  Let's call it 1050 miles.  Current measurements are about 1090 miles for the radius 
of the moon.  Isn't it amazing how close we can get with elementary trigonometry? 
 
To find the radius of the sun, let's use AG to represent the distance from the earth to the sun, 
since the equation is so much easier than if we use AH, and the results will be so similar. 
 

  
4
1sin

000,000,93
=

R  

 
Solving this gives a radius of slightly over 400,000 miles.  Current measurements for the radius 
of the sun are about 436,000 miles. 
 
 
 In 1688, the famous British mathematician, John Wallis, was able to translate the Greek 
text of Aristarchus into Latin, so that the current mathematics world could understand it.  The 
next two pages are from Aristarchus’s  book.  The first is the frontispiece of Wallis’ translation.  
Your students should be able to decipher where it says De Magnitudinibus & Distantiis Solis & 
Lunae, as well as the author's name, Aristarchus of Samos. The second is the page from a Greek 
manuscript of the text whose diagram most closely resembles the diagram on the student page.  
A transparency of either page is a definite attention getter. 
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From Aristarchus’ 
On the Distances and Sizes of the Sun and Moon 

 

 
 

Shown here is Proposition 13, with many scholia, concerned with the ratio to the diameters of the 
moon and sun of the line subtending the arc dividing the light and dark portions of the moon in a 
lunar eclipse. 
Source:  http://metalab.unc.edu/expo/vartican.exhibit/exhibit/d-mathematics/Greek_math2.html
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The Distance from Venus to the Sun 
Student Page 

 
 The orbital radius of Venus is less than the orbital radius of the Earth.  As we chart the 
path of Venus about the sun, we observe that the angle V(enus)E(arth)S(un) reaches a maximum 
at two places.  At each position of maximum angular separation, the angle EVS is a right angle.   
  
 When the sun was just below the horizon, and Venus was at this position of maximum 
angular separation, it was most easily visible from the Earth.  Depending on whether the sun was 
rising or setting, this planet was known as the Morning Star or the Evening Star. 
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E(arth)

q

orbit of Venus

S(un)

V(enus)

 Someone who knows the distance from the earth to the sun (93 million miles), and can 
measure this maximum angle (it is about 46 degrees), can determine the radius of the orbit of 
Venus.  Calculate the radius of the orbit of Venus. 
      

Radius of the orbit of Venus= _______________ 
 
 It wasn't until the advent of strong telescopes that a similar plan could be used to find the 
radius of the orbit of Mercury (why were telescopes needed for this planet?).  Its maximum 
angular separation is only 23 degrees.  Calculate the radius of the orbit of Mercury. 

 
Radius of the orbit of Mercury? ___________________ 

 
 
 Why can't we use an identical plan for the orbit of Mars? 
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The Distance from Venus to the Sun 
Teacher Notes 

 
The radius of Venus may be found from the equation  
 

  or 46sin
000,000,93

=   which yields a value of about 67 million miles. 

The reasons that stronger telescopes were needed before we could do the identical calculations 
on Mercury are: 
 1.  It is much smaller in radius, and hence harder to see 
 2.  It is further away from the earth, also making it harder to see. 

3.  It is much closer to the sun, so it is more frequently invisible (lost in the brightness of 
the sun's rays). 

 
The radius of the orbit of Mercury may be found from the equation 

  

 or 23sin
000,000,93

=  which yields a value of a little over 36 million miles. 

 
This right triangle drawing and simple equation work because the orbits of Venus and of 
Mercury lie within the orbit of Earth.  Mars and the other planets lie outside our orbit and so a 
different strategy is required to determine their radii of orbit.  You might ask the class if they can 
determine a method for finding the radius of orbits for those planets whose paths lie outside that 
of the earth.  An explanation of the method that Johann Kepler developed can be found in the 
section on the distance from Mars to the Sun. 

 
A true and perhaps useful anecdote here…… 
 
The author of this section of the module frequently walks to school in the morning, and his 
school is directly east of his home.  During a portion of the school year, he sees the sun rise 
directly in his path during his walk, and for a period of several days was able to see the Morning 
Star as well.  In fact, he observed that its elevation at the time of sunrise appeared to increase for 
a number of days, and then level off.  So…one morning, at this maximal elevation, he measured 
the angle of elevation with his thumb and forefinger, noting that it looked like about 45 degrees.  
Since he knew the distance from earth to sun (93 million miles)  and because he knew the 
relationship among the sides of a 45-45-90 triangle, he knew that the radius of the orbit of Venus 
would be 93 million miles divided by 2 .  The remainder of his walk to school was spent 
approximating this quantity, which he determined to be about 65 million miles.  Upon arriving at 
school he checked, through the Internet, for the official value of that radius and found it to be 67 
million miles…….  There's something empowering about the subject of mathematics, to permit 
one to determine the radius of the orbit of a planet while simply walking to school and making 
some innocent observations!!! 
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The Distance from Mars to the Sun 
Johannes Kepler (1571 - 1630 A.D.) 

Student Pages 
 
 Finding the radius of the orbit of Mars is a more difficult problem than finding the radius 
of the orbit of Venus, because our vantage point in the solar system doesn't permit us to keep an 
eye on the sun and the entire orbit of the planet.  Things are happening  "behind" us.  To 
determine this distance required an exceptional geometrician, Johannes Kepler, who inherited a 
HUGE amount of data from the astronomer, Tycho Brahe (1546 - 1601).  It was Kepler's 
ambition to describe the orbit of Mars, and, in doing so, he completely demolished the geocentric 
(earth centered) notion of the solar system.  Brahe's data and Kepler's interpretation of the data 
led to the conclusion that the true path of Mars was not a circle, but an ellipse with one focus at 
the sun. 
 
 Nonetheless, his first approximation of that orbit was a circle, and we faithfully follow 
his measurements and calculations below based on that premise, a good first approximation. 
 

Sun

orbit of Mars

orbit of Earth

Mars

Earth0

Earth1

 
 
 
 
 
 
 
 
 
 
 The crux of the matter hinges on knowing the length of the Mars year; that is, how many 
earth years it takes Mars to complete a single orbit.  Let's assume we know that (see handout on 
Length of Mars Year for details).  Since we're into the 1600's, let us make use of variables and 
say that Mars completes one orbit in k earth years.  The value of k is not an integer (you will see 
that at the end), which means that the earth will not be in the same position relative to the sun 
after Mars makes each orbit. 
 
 Suppose that at an initial time 0, the earth is located at E(0), marked Earth0 on the 
diagram.  At that time we measure the angle S(un)-E(arth)-M(ars), and then we wait k years, at 
which time Mars will be back at its original place and the earth will have moved to a position we 
call E(1), marked Earth1.  We measure the angle S-E(1)-M.  Now we do trigonometry. 
 

We know that SE = 93 million miles.  We are also assuming we know the value of k. 
 
 This means we can determine the angle E(0)-S-E(1).  How?  Suppose that k=3.4  .  That 
means that the earth has completed 3 revolutions and an additional important 0.4 of a revolution, 
which corresponds to 0.4 times 360 = 144 degrees.  That would be the measure of angle E(0)-S-
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E(1).  We can now find the length of the segment connecting E(0) and E(1) by using the Law of 
Cosines, as well as the measures of the two base angles of the isosceles triangle, E(1)-S-E(0). 
  
 Since we had Brahe's excellent measurements of angles S-E(0)-M and S-E(1)-M, 
knowledge of those base angles leads us to find the measures of angles M-E(0)-E(1) and M-E(1)-
E(0).  The Law of Sines gives us the distance between earth and Mars in each of the two settings, 
and the Law of Cosines then gives us the length of SM. 
 
 We are done, if only we can find the number k of earth-years it takes Mars to complete 
one orbit.  Remember that we needed the value of k to determine the measure of the angle E(0)-
S-E(1), which got us started.  That value is 1 year and 322 days. (For information on how this 
was determined, see the handout titled The Length of a Mars Year.) 
 

1. First find k as a decimal ___________ 
2. Use the fractional part of k to find the measure of angle E(0)-S-E(1) in degrees. 

________ 
3. That’s the major arc, so subtract from 360 to find the desired angle _______ 
4. Find the length of the segment E(0)E(1). ____________ 
5. Find the measure of angles S-E(0)-E(1)=S-E(1)-E(0)= __________ 
6.   Use measurements from Tycho Brahe of S-E(0)-M = 132.1 degrees and  

S-E(1)-M= 131.4 degrees, to determine the values of  
angles E(0)-E(1)-M=________________ 
and      E(1)-E(0)-M=________________   

7.   Determine the value of angle E(1)-M-E(0)=___________ 
8. Find the length of segments 

E(0)M = ______________  and E(1)M=__________________ 
 9.  Last step, use the law of cosines to find the length of segment SM=____________ 
  

There, that wasn’t so bad, was it? 
 
 
Note:  The given measurements due to Tycho Brahe were those taken on March 10, 1585 and on 
January 26, 1587.  You can check that those dates are 1 year, 322 days apart. 
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The Distance from Mars to the Sun 
Teacher Notes 

 
 The problem of measuring angles becomes trickier when the orbits lie outside that of the 
earth.  How does one measure the frequently obtuse angle S(un)-E(arth)-M(ars)?  Consider the 
ray from Sun to Earth, passing through Earth and heading out into space.  The angles S(un)-
E(arth)-M(ars) and M(ars)-E(arth)-S(pace) form a supplementary pair.  If we take our angle 
measurement at true midnight (halfway between sunset and sunrise), and measure the angle then 
between Mars and the meridian, its supplement is the angle we desire.  This is because at 
midnight, the sun is on the meridian (although we cannot see it).   
 
 The length of time that Mars takes to complete one revolution about the sun is 687 days.  
Here are the answers for the questions asked in the student page. 
 
1.   Since k = 687/365, the decimal version of k = 1.8822.  This means the earth has completed 1 

revolution and part of the next in one Martian orbit. 
 
2.   The extra part of the orbit, in degrees, is given by .8822 x 360 = 317.6 degrees. 
 
3.   This latter value is the major arc.  We want 360 minus that, which is 42.4 degrees. This is 

angle E(0)-S-E(1).   
 
4.   Now use the Law of Cosines on triangle E(0)-S-E(1), where the legs of the isosceles triangle 

are each 93 million miles.  This yields a value of about 67.3 million miles for the distance 
E(0)-E(1) between the two earth positions. 

 
5.   The sum of the two angles is 180 – 42.4 = 137.6, so each angle is 68.8 degrees. 
 
6.   E(0)-E(1)-M = 131.4 – 68.8  = 62.6 degrees. E(1)-E(0)-M =  132.1 – 68.8  = 63.3 degrees.  
 
7.   E(1)-M-E(0) = 180 – (62.6 + 63.3) = 54.1 degrees 
 
8.   67.3 million miles / sin 54.1 =  E(0)M / sin 62.6.  This gives  E(0)M = 73.8  million miles 
      67.3 million miles / sin 54.1 = E(1)M / sin 63.3.  This gives E(1)M = 74.2  million miles 
 
9.  Using triangle S-E(1)-M, we have, using the Law of Cosines, 
 SM2 = (93 million)2 + (74.2 million)2  – 2(93 million)(74.2 million) cos 131.4 
 This gives SM = 152.6 million miles for our calculations. 
 
Since the orbit of Mars is an ellipse, the actual distance from Mars to the sun ranges from about 
129 million miles to 155 million miles.  Since our value is close to the maximum that must mean 
that Tycho’s two measurements were taken when Mars was at close to its maximum distance 
from the sun.  If you took the two measurements at another time, you would get a smaller 
answer.  In any case, the value we have obtained from fairly simple geometrical considerations is 
a very good approximation to the truth. 
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The Length of a Mars Year 
(Johannes Kepler 1571 - 1630 A.D.) 

Student Pages 
 

 The key to determining the radius of the orbit of Mars lies in finding out how long it 
takes Mars to complete an orbit around the sun.  Kepler was fortunate that the orbit of the earth 
and Mars lie in the same plane, and he exploited that fact, with some measurements from Tycho 
Brahe (1546 - 1601) and some basic algebra. 
 
 Since the orbits are in the same plane, there must exist a time at which the earth is 
between and collinear with the sun and Mars.  At this time the sun and Mars are said to be in 
opposition, and Brahe had documented the dates of those occasions.   
 

How can that be done?  When they are observed from opposite sides of the earth, how 
can one see both of them to determine that the angle is truly 180 degrees?  The key is to realize 
that the sun is directly opposite a spot on the earth at midnight.  A point of order must be made 
here.  He needed "real" midnight instead of the "practically" midnight that time zones and 
Daylight Savings Time have artificially created.  With that as a caveat, Brahe simply had to 
watch for when Mars was directly on the North/South meridian at midnight.  That was the "day 
of opposition". 

Mars1
Earth1Sun

Earth2

Mars2

 
 Suppose, for example, that consecutive occurrences of opposition are 1 and 2/9 earth 
years apart.  That would mean that the earth had traveled 1 orbit and 2/9 of the next orbit, while 
Mars had traveled only 2/9 of its orbit.   
 
 The next occurrence of opposition would be in another 1  2/9 earth years, at which time 
the earth would have made 2 and 4/9 orbits, while Mars would have made 4/9 of an orbit.  In the 
next two occurrences of opposition, Mars will have made 6/9 and 8/9 of an orbit.  After four and 
one half occurrences of opposition, Mars will have made 9/9 of an orbit.  That's an entire orbit, 
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and it took 4.5 occurrences of opposition, each of which took 1 and 2/9 earth years….and that 
product yields 5 1/2 earth years, for Mars to complete one orbit. 
 
 Let's generalize this.  Suppose occurrences of opposition occur every 1 + a/b earth years.  
Then the earth has gained a/b of a revolution on Mars, and when b/a such occurrences have 
transpired, Mars will have completed a revolution.  The product of b/a and (1 + a/b) , which is 1 
+ b/a, is the length of a Martian year in terms of earth years. So, for occurrences of opposition 
every 1 + a/b earth years, the length of the Martian year will be 1 + b/a earth years. 
 
 The actual length of time between occurrences of opposition, as measured by Tycho 
Brahe, was 2 years and 48 days.  Set this equal to 1 + a/b, and see how long he determined the 
Martian year to be.  
    Determine the value of a/b = ________ 
    Now determine the value of b/a = ________ 
    Now the value of 1 + b/a (length of Martian year) =______ 
 
 
 Did you get 687 days?  Great!!!!  This is the piece of information Kepler was missing in 
order to be able to find out the radius of the orbit of Mars about the Sun.   
 

A good and relevant website is 
 http://csep10.phys.utk.edu/astr161/lect/retrograde/copernican.html 
 Accessed June 27, 2001 
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The Length of a Mars Year 
Teacher Notes 

 
Tycho Brahe measured consecutive occurrences of opposition at 2yrs 48 days.  That is the 
number 1 + a/b, which means that the fraction a/b is equal to 1yr 48 days...or 1 + 48/365 
years...or 413/365 years.  That means that the fraction b/a equals 365/413 and the expression 1 + 
b/a equals 1 + 365/413 which equals 778/413 which is the length of the Martian year in Earth 
years.  In other words, the Martian year is 1.88 earth years, or approximately 687 days.  
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Triangle Applications 
Teacher Notes 

 
Description of Unit:  The two parts Right Triangle Problems and General Triangle Problems 
complement the class textbook and do not replace it.  They can be used independently in case the 
textbook places the topics in two different chapters, or by teacher choice.  Each part has a student 
handout consisting of exercises linked by a chronological narrative, and a “teacher’s manual” 
titled Teacher’s Notes, Answers, and Solutions.  The exercises are either historically significant 
or represent a historically significant type of work.  Methods of solution are outlined in steps for 
the student; they recreate in modern terms the actual historical methods.   
 

Time allowed could be 2 to 4 days depending on time constraints, assignment in class and 
homework, your selection of exercises, investigating historical setting, and the level of student 
background, ability, and interest.   
 
 Connections apply to the units Shadow Reckoning, Charting the Heavens, and the Law of 
Sines and Cosines.  Mention that for actually navigating and surveying large areas the curvature 
of the Earth must be considered.  More challenging concepts may be explored in the unit 
Spherical Trigonometry. 
 
Prerequisites:  For the Right Triangle Problems:  The trigonometry needed is an 
understanding of the 6 ratios of an acute angle in a right triangle.  This can be done in a 
Geometry class.  A couple of the problems involve two algebra skills of solving equations:  
proportion (a/b = c/d) and like terms (ax = c + bx).   
 
For the General Triangle Problems:  Students should have learned the statements of the Law 
of Sines and the Law of Cosines and have done at least some abstract textbook exercises.   
 
Materials:  Scientific calculator. 
 
The second Right Triangle problem, “Navigation:  Miles of Longitude and Pedro Nunes’ 
Quadrant”, calls for a reference such as dictionary or almanac in order to convert leagues to 
miles and to determine the Earth’s circumference.  Recommended in addition:  a globe with the 
usual lines of longitude and latitude, and the Mercator map (try your school library or social 
studies department).   
 
 Optional, depending on need in student visualization:  a student inclinometer (instrument 
for measuring vertical angles), and a student transit (instrument for measuring horizontal angles).  
Both functions could conceivably be in a single tool.  Such could be made by a student 
(protractor, string, weight, straw – directions can be found) or bought inexpensively from 
math/science supply houses. 
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Triangle Applications  
Right Triangle Problems 

Student Pages  
 
 The first book to define trigonometric ratios for an acute angle in a right triangle was 
published in 1551 in Leipzig, Germany, the Canon doctrinae triangulorum by Georg Joachim 
Rhaeticus (1514–1576).  Previously the trigonometric functions had been defined as functions of 
an arc in a circle.  The Canon was also the first book to contain all six trigonometric functions.  
Rhaeticus was the preeminent German astronomer in the first half of the sixteenth century.  He 
became an associate of Copernicus (1473–1543), helped him with mathematics, and persuaded 
him to publish the heliocentric (sun centered) model of the universe. 
 

Sun’s Angle by Shadow Reckoning 
 
 Astronomers in Greece, India, and the Arab world calculated the sides and angles of 
spherical and plane triangles for the purposes of keeping time, making calendars, and knowing 
directions.  The way to face during prayer is explored in the unit on spherical trigonometry.   

 
In his Exhaustive Treatise on Shadows, the Islamic astronomer Al-Biruni (973–1055) 

found the angle of elevation of the sun, given the length of a stick (“gnomon”) and its shadow on 
the ground.  Al-Biruni’s method was equivalent to finding the hypotenuse (cosecant) by a 
Pythagorean identity, converting it to sine, then looking up the angle in a sine table.  In France 
late in the twelfth century, the same question and basic solution appeared in an anonymous text 
named The perfection of any art.  

c
B 

gnomon 
= 1 

C α shadow = b 

SUN  

 A 

Exercise:   
a)   Express the hypotenuse in terms of the given gnomon length 1 unit and shadow length b. 
  
 
b)   Compute and compare csc α and sin α.  How would you find the angle α? 

 
 

c)   Only a sine table was available at the time.  With today’s knowledge of all six trigonometric 
ratios, describe a simpler way to find the angle of elevation of the sun. 
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Navigation:  Miles of Longitude, and Pedro Nunez’s Quadrant 
 
 During the sixteenth and seventeenth centuries, navigation for trade, exploration, and 
settlement of new lands took a mathematical approach.  Navigators adopted tables, formulas, and 
instruments based on trigonometry and astronomy in order to reckon position accurately when 
they were out of sight of land.  Spherical trigonometry applied on the globe, but for short 
distances, plane trigonometry served.  Latitude (north–south coordinate) was readily found by 
the altitude of the sun or a star, but finding longitude (east–west coordinate) remained a problem. 
 
Exercise:   Sailors valued knowing the length of a degree of longitude, at their given latitude, in 
order to really know where they were.  Pedro Nunes (Portugal 1502–1578) designed a quadrant 
instrument for determining this length.  Nunes specialized in mathematical navigation as a 
professor in a country whose riches chiefly derived from sea trade.  He was the first to point out 
how a rhumb line differed from a great circle.  Nunes held a medical degree, wrote poetry, and 
was Chief Royal Cosmographer as well as the greatest Portuguese mathematician of his time. 
 
 The quadrant’s scale on the line AB meant there were 17 ½ leagues in 1° at the equator; 
the scale on AC represented percentage.  The scale along the arc BC (not numbered) represented 
latitude, with each of the alternating black and write boxes representing 1°.  The semicircle 
provided had diameter AB.  The silk thread came attached at A, with a movable bead on it.  First 
the sailor put the thread along the arc BC (B = 0°, C = 90°) to his latitude (in this example 50°).  
He placed the bead on the intersection of the thread with the semicircle (here at D).  Using AD as 
a radius he swung an arc to intersect the AC scale (here at 64%).  Thus his ship would cover 
(0.64)(17.5) = 11.2 leagues per 1° of longitude.       
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Source of quadrant: The Haven-Finding Art:  A History of Navigation from Odysseus to Captain 
Cook, by E. G. R. Taylor (New York:  Abelard-Schuman, 1957). 
 
a) Show how the sailor could find the number of leagues per degree directly without 

multiplying. 
  
b) On Nunes’s quadrant find the number of leagues per 1° of longitude at your latitude.  

Look up the definition of “league” and convert your distance to miles.  Compare this with 
a modern determination of the number of miles per degree of longitude at your latitude. 

 
c) Use trigonometry to show why Nunes’s quadrant worked.  Hint: Connect BD and 

consider the right triangle ABD. 
 
The familiar map (1569) by Gerardus Mercator (Belgium, 1512–1594) displays higher 

latitudes stretched wider by the factor of (circumference of earth at equator) / (circumference of 
earth at latitude L°) = (2 π radius r of Earth) / (2 π r cos L°) =  sec L°.  To keep directions 
correct, Mercator also stretched the map in the north–south direction by the same factor.  
Navigators could then plan and sail in a constant and correct direction.  In 1599 Edward Wright 
(England) wrote out the trigonometric principles behind Mercator’s “chart”. 

 
 

The Tower Problem of Pitiscus 
 

In medieval Europe, up into the fourteenth century, astronomy remained the primary 
focus of plane and spherical trigonometry.   This is seen in popular texts written by Richard of 
Wallingford (1291–1336) in England and Levi ben Gershon (1288–1344) in France.   
 

An unknown side of a triangle, such as the height of an obelisk or the distance to an 
enemy fort, was found by means of geometry and similar triangles.  A surveyor would measure 
off an accessible distance and then design a triangle having a side of that length.  He could sight 
an angle on an instrument called a quadrant.  This tool is similar to the inclinometer that you may 
have used to sight the top of the school flagpole in order to calculate its height.  The medieval 
surveyor often did not need to take angle measures because some types of quadrant had scales, 
labeled umbra recta and umbra versa, from which he could merely read an appropriate ratio. 
 

In a now famous textbook exercise, Bartholomew Pitiscus (Germany, 1561–1613) posed 
the task of indirectly measuring the height of a tower not by similar triangles but by 
trigonometric functions.  This problem, among many others, appeared in his Trigonometriae 
(1595), a book which was the first to introduce the word “trigonometry.”  

 
(Source of the problem:  A History of Mathematics, 2nd ed. by Victor J. Katz, publ. Addison–
Wesley 1998.) 
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In the problem, ∠ Q is measured with a quadrant to be 60° 20′, and PR is measured off at 200 
feet.  The student was to determine the height QR.    

 

R

Q

P 

 
 Undoubtedly you find it strange that ∠ Q is specified, but that is indeed the measure 
Pitiscus presented.  It is definitely not the angle of elevation ∠ P that you have learned to 
observe from the ground (to the top of the flagpole), nor is it the congruent angle of depression 
sighted from Q to P (by a prisoner in the enemy's tower who happened to have a quadrant in his 

back pocket).  Pitiscus’s choice of ∠ Q would 

 

 

make better sense however if we look at what 
was going on in the math world of his own 
time.  Due to lack of detailed records we 
cannot of course know for certain, but as a 
mathematics scholar Pitiscus probably would 
have been familiar with the real–world 
mathematical applications of his time, such as 
gunnery, as illustrated in this page from La 
nova scientia (Italy 1537) by the influential 
Niccolo Tartaglia (1499–1557).   In this 
treatise Tartaglia explains surveying for range–
finding as well as the use of a gunner’s 
quadrant.  You should notice that when the 
muzzle is elevated, the weighted string 
intercepts the “protractor” scale in a plausibly 
similar position and fashion as the ∠ Q in 
Pitiscus’s tower problem. 

 
 

(Source of picture:  
http://www.mhs.ox.ac.uk/geometry/cat1.htm) 
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Exercise:  Equipped with the usual sine and tangent tables of his day, Pitiscus gave two 
solutions, one based on sine and the other on tangent.  The following solution uses tangent; the 
solution with sine is below. 
 
a)  Evaluate ∠ P, the complement of  ∠ Q. 
 Write an expression for tan ∠ P in right triangle PQR.       
 Express QR in terms of tan ∠ P. 
  
b) Evaluate QR to determine the height of the tower. 
  
To see why Pitiscus probably chose to express QR in terms of the tangent of angle P rather than 
angle Q, do the following:    
 
c)  Write an expression for tan ∠ Q in right triangle PQR.       

Express QR in terms of tan ∠ Q. 
Compare with QR in terms of tan ∠ P.   

 
Before electronic calculators, multiplying by the tangent of an angle was easier than dividing by 
it because the tangent value contains many digits. 
 

Pitiscus actually set up the proportion PR / 100,000 = QR / tan 29° 40′ to solve the 
problem.  The 100,000 came from the fact that people of his time based tables upon a circle of 
radius 100,000 (where today we have the radius = the unit 1).  Thus in his table, the tangent of  
29° 40′ was expressed as the integer 56962.  

 
This was only one of two solutions by Pitiscus.  He also used a sine table and presented a 

solution using sine.   In any triangle, there is a constant ratio between the sine of an angle and the 
side opposite the angle.  You will learn this amazing property later formally by the name of the 
Law of Sines when you study general triangles (including oblique, that is, non–right triangles).  
Pitiscus and others applied the Law of Sines to right triangles quite readily.  This is Pitiscus’ 
solution using sines. 

 

d) In triangle PQR , you have the proportion sin sinQ
PR QR
∠

=
P∠ .   Substitute the known 

values of ∠Q, ∠P, and PR and solve for QR. 
 
e) Pitiscus, using his sine table based on a circle of radius 100,000, had sin 60° 20′ = 86892 

and sin 29° 40′ = 49495.  He gave the answer 80204113
86892

=QR  feet. Compare your 

answer with his. 
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Finding a Height if You Know Its Distance and the Angle of Elevation 
 
During the medieval period, waging battle involved studying the motion of cannonballs, 

muzzle angle in gunnery, distance to enemies, height of their fortifications, distance between two 
separated outposts, and the depth of ditches.  In a field manual (1590) for his “familiar staffe” 
instrument, John Blagrave wrote about altitude:  “If a Wall or Tower were to be scaled ... How 
...to get the height thereof, thereby to make your scaling ladders accordingly.”  Concerning 
profundity:  “If a man were prisoner with the 
enemie, how being in the top of a tower on the 
leads, or out of his prison window, hee might 
... know the depth to the ground, to see if he 
were able with anie device to let himselfe 
downe without danger.”  (Although Blagrave 
used similar triangles and the staffe’s scales 
rather than trigonometry, the point here is that 
the problems arose from the “real world”.)  
 
Source:  A Booke of the making and use of a 
Staffe, newly invented by the Author, called the 
Familiar Staffe, by John Blagrave, publ. Hugh 
Jackson, London 1590 – facsimile publ. Da Capo Press, New York 1970.  

 

 

 
 

 
 
A picture of 16th century trigonometry activities, from the textbook De quadrante geometrico 
libellus (Nuremberg, 1594) by Cornelius de Judaeis  
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Exercise:  This is suggested by a problem published in 1752.  Wishing to calculate the height AB 
of the building, this surveyor has stepped away 30 paces from the axis of the tower, on level 
ground.  Standing at point D, he reads an angle of elevation 44° on the scale of his quadrant.   
A pace is an average stride in walking, from 2.5 to 3 feet in length.   Suppose that the surveyor’s 
eye is 5 feet above the ground and his pace is 2.5 feet. How tall is the building? 
 

 
 
 
The use of a quadrant instrument, in L’Uso della Squadra Mobile by Ottavio Fabri, Trent 1752, 
shown in History of Mathematics, Volume II, by David E. Smith, publ. Dover Publications 1958, 
page 355. 
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A Textbook Problem from 1808 
 

At the start of the 19th century, students learned a type of trigonometry called “Heights 
and Distances, or Altimetry and Longimetry”.  According to Mathematics by Samuel Webber 
(England 1808):  “By the mensuration and protraction of lines and angles we determine the 
lengths, heights, depths, or distances, of bodies and objects.”  Students used logarithms to 
shortcut multiplying and dividing by numbers with many digits. 
 
Exercise:   From a known height to find the distance of an inaccessible object on a level.  From 
the top of a ship’s mast, which was 80 feet above the water, the angle of depression of another 
ship’s hull, at a distance upon the water, is 20°; what is their distance?  (Source:  Webber, page 
96, Problem III) 
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The Inaccessible Height and Distance: 
A Problem Crossing Many Centuries and Cultures 

 
 

Liu Hui of China posed the question of 
finding the height of an island as the first problem 
in The Sea Island Mathematical Manual (year 
263).  The observer cannot reach the perpendicular 
point at ground level under the island’s peak, since 
it is across water as well as inside the mountain.  
Without knowing a  measured distance to that 
point, one cannot simply apply right triangle ratios.   

 

 
The Chinese mathematician solved the 

problem as follows:  He chose two observation 
points separated by a known distance, and from 
each point he sighted the island’s peak over a pole 
of known length.  However, since Liu Hui did not 
use angles, his solution was not trigonometric.  He 
used side ratios of similar right triangles.  Some 
math historians consider his work to be a precursor 
of trigonometry.   
  
 The astronomer Aryabhata of India (born 
476) wrote of the same type of problem.  His 
solution was basically the same as the Chinese 
one. 
 
 The Islamic mathematician Al–Qabisi 
(tenth century) measured the angles of elevation at the 2 poles and worked out a trigonometric 
form.  He used only the sine ratio, and the expression is cumbersome.  Al-Biruni (973–1055) 
used isosceles right triangles and similar triangles.  
 
 Hugo of St. Victor (Paris, 1096–1141) gave the problem in a surveying text but still used 
only geometry to solve it.  As mentioned before, plane and spherical trigonometry was used for 
astronomy and heavenly triangles, not for surveying earthly ones, well into the fourteenth 
century. 
 

In the real world of sixteenth and seventeenth century Europe, waging battles involved 
geometry and calculations as part of strategy.  The problem of indirectly measuring an 
inaccessible height appeared widely. 
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Drumheads served as a convenient 
“paper” for recording angles and lines in the 
field (including the battlefield).  Mathematics 
historian Smith gives an illustration, from 
Libro del Misurar (1569) by Belli of Venice, 
of “drumhead trigonometry, a common 
method of triangulating in the 16th century”.  
  
 
 
 
 
 

 
 
 
In a field manual (1590) for his 

invention, a “familiar staffe” instrument, 
Blagrave gave good reason why combatants 
measured from afar:   “If a Wall or tower 
were to be scaled ... How ... to get the height 
thereof, thereby to make your scaling ladders 
accordingly, ...Where you dare not come 
neere the base of the tower for daunger of shot 
or let by reason of some deepe mote or ditch.”  
Blagrave based his methods on his familiar 
staffe’s scales as well as similar triangles. 
 
 
 
 
 Around 1700 Murai Masahiro in Japan published a problem similar to the Sea Island 
problem in Riochi Shinan.  It’s trigonometric solution was influenced by the West. 
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Exercise: 
 

 

 

Source:  Mathematics, Vol. II, by Samuel 
Webber, publ. Cambridge University Press 
1808, page 99. 
 
 
Wanting to know the height of an inaccessible 
object; at the least distance from it, upon the 
same horizontal plane, I took its angle of 
elevation equal to 58°, and going 100 yeards 
directly farther from it, found the angle there to 
be only 32°:  required its height, and my 
distance from it at the first station, the 
instrument being 5 feet above the ground at 
each observation.  
 
 

a)   In triangle BCA, write the ratio for cot ∠ BCA, that is cot 58o. 
 
 
b) Solve for CA. 
 
 
c) Use the answer in b to express the length of DA in terms of AB. 
 
 
d) In triangle BDA, write the ratio for cot ∠ D, that is cot 32o; then use the answer in c to 

express this solely in  terms of AB. 
 
 
e) Solve the final equation of d for AB. 
 
 
f) Add the height of the instrument to find the height of the tower in yards. 
       
  
g) Replace your AB value into your CA expression in b, and find the distance to the tower. 
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Extensions 
For Inquiry, Challenge, and Enjoyment 

Exercise: 

 

A 

C 

s s 
B α β 

d 
F 

the level ground  

E 

Complete this general solution for height, using right triangle trigonometry.  Then compare the 
result with the geometric results of Liu Hui and Aryabhata. 
 
 
Given:  data by direct measurement:  sticks or poles of equal length s 

distance d between the poles  
angles of elevation α, β sighting the object’s top at C 

 
To find: height CF  
 
a)  The plan is to find EC then add it to s for a total of CF.   

For convenience, call EC = y and call EA = x.  In right triangle AEC, write an expression for 
cot α, and solve for x in terms of y. 

  
 
 
b)  In right triangle BEC, write an expression for cot β.  Then substitute the value for x found in a 

to get an equation in y.  Solve for y. 
  
 
 
c)  Now write an expression for the total height CF. 
  
 
Liu Hui solved this problem as follows, where the Chinese word fa means the divisor, and shi 
means the dividend (The Sea Island Mathematical Manual, edited by Frank Swetz):   
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Multiply the distance between poles by the height of the pole, giving the shi.  
Take the difference in distance from the points of observations as the fa to divide 
[the shi], and add what is thus obtained to the height of the pole.  The result is the 
height of the island.  

 
The first sentence gives, from our diagram, d times s, so the dividend will be ds.  The second 
sentence tells us to take the bolded bases of the 2 small triangles and subtract the shorter (call it 
a) from the longer (call it b).  This difference, b – a, will be the divisor.  So the height of the 

island is ds s
b a

+
−

.   

 
d)  Derive this value for the height by using the similarity ratios in two sets of similar triangles in 

the diagram.   You should get two different expressions for the quantity sx.  If you equate 
them and solve for y, you should be able to derive Liu Hui’s expression. 

 
 
Aryabhata noted in his solution that he was dividing by the difference of the poles’ shadows.  
Also remember that these shadows along the ground, the umbra recta, represent our modern 
cotangent, b = s cot β and a = s cot α.   
 
e)  Show that your trigonometric solution from c and Liu Hui’s solution from d are the same, by 

using the expressions for the shadows noted above. 
 
As a follow–up, look into The Sea Island Mathematical Manual and learn how Liu Hui found the 
distance to the island. 
 
Resources:  The Sea Island Mathematical Manual: Surveying and Mathematics in Ancient 
China, by Frank J. Swetz, Pennsylvania State University Press 1992, a translation and 
commentary on the Haidao Suanjing written by Liu Hui in 263. 

 
“Lecture 4 A Chinese surveying problem” at the web page http://www.maths.uwa.edu.au/ 

Staff /schultz/3M3/L4Chinese trig.html.   
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Triangle Applications  
Right Triangle Problems 

Teacher Notes, Answers, and Solutions 
 

Sun’s Angle by Shadow Reckoning 
   

Exercise:   
 
a)  c = 1 2+ b  
 
b) csc α  = c / 1 = 1 2+ b ;  sin α.= a / c = 1 / 1 2+ b ; the cosecant and sine are 

reciprocals of one another.  To find α, look up the sine of α just calculated in a table of 
sines and then find α.  If you use a calculator, you can just press the inverse sine button to 
accomplish the same thing. 

 
c) tan α = (length of gnomon) / (length of shadow).  Nowadays we would press the [tan –1] 

key on a calculator and enter the above quotient, to evaluate α.. 
   

 
 

Navigation:  Miles of Longitude and Pedro Nunes’s Quadrant 
 
Teacher’s Note:  Show students that on a globe the equator is at 0° latitude, and the poles 90° N 
and 90° S; also, that longitude 0° starts at a prime meridian, and circles of constant latitude are 
smaller for higher latitudes.  Circles of constant longitude are called meridians, and circles of 
constant latitude are called parallels.  There are approximately 69.4 miles 1°  of a great circle.  
We get this by dividing the circumference of the Earth (25,000 miles) by 360.  So this is the 
length in miles of 1° at the equator.  The length of 1° is shorter at higher latitudes. 
 
Exercise:    
 
a) Turn the bead to the AB scale. 
 
b) Students will refer to standard sources such as dictionary or almanac.  Unfortunately, 

there were different “leagues” in use.  In particular, the English land league was about 3 
miles, or 4.83 km., the English nautical league was 5.56 km. or 18,240 ft, while the 
French league was 5.85 km.  If we use Nunes’ value of 17.5 leagues per degree at the 
equator, neither of these three leagues gives the correct value for the earth’s 
circumference.  But that value was probably not known accurately by Nunes either. 

 
c) Solution:  Let D = position of bead on the semicircle.  Triangle ADB is a right triangle 

since it is inscribed in a semicircle.  In that triangle, cos ∠ DAB = DA / AB = DA / AC = 

 107 



DA / (100%).  Thus the position (length DA) of the bead on scale AC is just cos ∠ DAB.  
Now look at the diagram  

 
 
 
 
         (Teacher’s Note: 
         This diagram is not included 
         in the student handout.) 

center of earth 

north pole 90o 

S 
Lo 

Lo 

radius = r at latitude L 
T 

Earth’s radius R equator 0o 

cross section of the Earth 

 
 
 
 
 
 
 
 O 
 

of a cross section of the Earth.  The circle of higher latitude has radius r = ST, and   
cos ∠ OST = r / R.  Also ∠ OST = L°, so r = R cos L°.  In terms of the circumference of a 
circle, on which the sailing route is, 2 π r = 2 π R cos L°.  Therefore Nunez’s quadrant 
works because the distance per 1° at the equator is scaled down by a factor of cos L° at 
the sailor’s latitude L°. 
 

Teacher’s Note:  Students may explore navigation and mapping, which are profound sciences in 
themselves.  A few suggestions are: 
 

Edmund Gunter’s trigonometry methods and instruments for mariners 
Gunter’s biography, http://es.rice.edu/ES/humsoc/Galileo/Catalog/Files/gunter.html.  
This web page was accessed on 28 June 2001. 
The Navigation chapter in Math and Civilization by Resnikoff and Wells, publ. Holt 
1973. 

 
 

The Tower Problem of Pitiscus 
 

Exercise:  
 

a)  ∠P = 29° 40′; tan 29° 40′ = QR / 200; QR = 200 tan 29° 40′ 
 
b) QR = 200 tan 29° 40′ = 113.9238 feet, or approximately 114 feet. 
 
c) tan 60° 20′  = 200 / QR;    QR = 200 / tan 60° 20′.  In terms of tan ∠ P, we multiply by 

200.  In terms of tan ∠ Q, we divide into 200.   
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Teacher Note:  The next exercise is stated in such a way that it can be done without a lesson on 
the Law of Sines.  Triangle PQR is a right triangle, and the solution is simple enough to here 
wrap up Pitiscus’ work.  At this point in time, students will be satisfied with being given the 
statement of the Law of Sines without proof; they are resilient in accepting that the proof will 
come later and that further applications will be fleshed out at the proper chapter. 
 
d) QR sin ∠  60° 20′ = PR sin ∠ 29° 40′, so QR = 200 sin ∠ 29° 40′ / sin ∠  60° 20′.  

Therefore, QR = 113.9238 feet, the same answer as before. 

e)  If we use Pitiscus’ values, we get QR = 9899000/86892 = 80204
86892

113  =113.9230.  

Pitiscus’ sine tables were not as accurate as ours. 
 
 

Finding a Height if You Know It’s Distance and the Angle of Elevation 
  

Exercise:   
 
Since 30 paces = 75 feet, the height of the building above eye level is 75 tan 44°.  Thus the actual 
height of the building is 5 + 75 tan 44 = 77.43 feet. 
 

 
 

A Textbook Problem from 1808 
 

Exercise:    
 
We have cot 20° = x / 80, so x = 80 cot 20° = 80/tan 20° =  219.798 feet 

 
 

The Inaccessible Height and Distance: 
A Problem Crossing Many Centuries and Cultures 

 
Exercise: 
 
a)   cot 58° = CA / AB  
b) CA = AB cot 58° 
c) DA = 100 + AB cot 58° 
d) cot 32° = DA /AB = (100 + AB cot 58°) / AB 

e) AB cot 32° = 100 + AB cot 58°; so 100
cot 32 cot 58

AB =
−

 = 102.51 yards. 

f) Since 5 feet = 1.67 yards, the height of the tower is 104.18 yards. 
g) CA = AB cot 58° = 102.51(0.6249) = 64.06 yards. 
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Extensions for Inquiry, Challenge, and Enjoyment 
 

Exercise:  
 
a)   x = y cot α = EA 
 
b) cot β = (x + d) / y 
       cot β = (y cot α + d) / y 
 y cot β = y cot α + d 
 y (cot β – cot α) = d 
 y = d / (cot β – cot α) = EC 

c)   CF = 
cot cot

d s
β α

+
−

 

 

d) ;s y s y
a x b x d

= =
+

 

 sx = ay;  sx + ds = by, so sx = by – ds 
 ay = by – ds or by – ay = ds or (b – a)y = ds 

 dsy
b a

=
−

 

 It follows that the height is ds s
b a

+
−

. 

 

e) CF = 
cot cot

d s
β α

+
−

= d dss sb a b a
s s

+ = +
−−

. 

 
Teacher’s Note:  Students who like to do mathematics, and not just read about it, could write a 
precise explanation of the relationship between the similarity approach to finding height and the 
trigonometric approach.  They could present this material in a paper, poster, or talk.  The 
inaccessible height and distance problem connects mathematics within itself (geometry, algebra, 
trigonometry) as well as diverse peoples and times.  Some students may even appreciate the 
mathematical beauty. 
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Triangle Applications  
General Triangle Problems 

Student Pages 
 

Al-Biruni’s Calculation of the Earth’s Size 
 

The Islamic mathematician Al-Biruni (973–1055) gave a “method for the determination 
of the circumference of the earth.  It does not require walking in deserts.”  The standard method 
of determining the circumference did involve such walking, because it required measuring the 
distance on the earth between two points one degree of latitude apart. This had been done on the 
orders of a caliph.  Al-Biruni had a new idea.  He calculated the height of a mountain in 
Nandana, India, with a scaled square board and similar triangles.  Then he went to the mountain 
top with his astrolabe and measured the angle of depression to the horizon.  Since he had a table 
of sine values, Al-Biruni applied the Law of Sines to find the radius of the Earth. 
 
Al-Biruni’s historical solution: 
 

 

ground level 

O 

P 

F 

L 

C 

H 

 
The scale of the mountain has been very exaggerated to make a clear diagram.  In this diagram, P 
represents the peak of the mountain; the length PF is the known height of the mountain; O is the 
center of the earth, and H is the horizon point as viewed from the mountain’s peak.  We want to 
calculate OF = OH, the radius of the earth.  Note that PH is tangent to the earth at H and is 
therefore perpendicular to OH.   
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a) Al-Biruni’s value of the mountain’s height PF was 652.055 cubits.   His dip angle LPH 
was 34 minutes (which is less than 1 degree).  In theory taking this measurement is fine, 
but be aware that a small error will be greatly magnified.   Al-Biruni applied the Law of 
Sines to right triangle PFC.  In triangle PFC, label the values of the mountain’s height 
and the two acute angles.  (Note:  Your textbook probably applies the Law of Sines only 
to oblique triangles.  People used to apply it to right triangles too.)  Write the Law of 
Sines ratio for the 2 legs in triangle PFC.  Evaluate FC.  Then use the Pythagorean 
Theorem to evaluate PC. 

 
 
 
 
  
b) FC = CH because from an exterior point two tangents to a circle are equal.   Calculate the  

distance PH to the horizon. 
  
 
 
 
c) Now look at triangle PHO.  Update your diagram by labeling in the values of the 

hypotenuse and ∠ O.  Write the Law of Sines ratio in terms of  ∠ OPH, ∠ O,  side PH, 
and unknown side OH.  Solve for OH.  Then use Al-Biruni’s value π = 3 1/7 to compute 
the circumference of the Earth. 

 
 
 
 
d)    Al-Biruni’s results were:  radius 12,803,337.036 cubits, and circumference 

80,478,118.511 cubits, although your results may differ slightly.  Thus the length of a 
degree on a meridian was this circumference divided by 360.  Find the length of one 
degree in cubits.  Then, given that 4000 cubits are equal to one Arabian mile (in the 
measurements of his day), determine the length of a degree in miles.  Al-Biruni judged 
this value “very close” to what a geodetic survey some years earlier had already shown. 

 
 
 
 
e)  There were many different cubits used in the ancient world.  If we assume that the cubit 

of Al-Biruni was approximately 20”, calculate how close Al-Biruni came to Earth’s 
actual circumference. 

 
 
 
Source:  Episodes in the Mathematics of Medieval Islam, by J. L. Berggen, publ. Springer–
Verlag 1986. 
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Modern Solution of Al-Biruni’s Problem 
 
a) In right triangle PHO, let r symbolize radius OH = OF.  Since OP = OF + FP, we have 

OP = r + 652.055.  Furthermore, we know that ∠ O = 34’.  (Why?)   Choose one of the 
six modern trigonometric functions, to express a ratio involving radius r and ∠ O. 

 
 
 
b) Solve the equation from a for r algebraically, and find the value of r.  Compare this to 

your previous calculation. 
 
 

How Far to an Inaccessible Object 
  

Someone at location A wishes to find the 
distance to some visible point C.  However, he cannot 
obtain it directly by pacing or using measuring sticks 
because access is blocked by such things as a river, hills, 
a swamp, or enemy surveillance.   

 

 
Exercise:  Complete the general solution of the 
inaccessible distance problem.  The person wants to 
know distance AC.  He starts by measuring off a 
sideways distance AB and the angles A and B. 
 
a) Apply the Law of Sines to relate AC and AB.   
  
 
 
b) Express AC in terms of only the knowns AB, angle A, and angle B. 

 
 
 
 

Height and Distance of an Inaccessible Building 
 

By the 1800s students solved the inaccessible height and distance problem by applying 
the Law of Sines.  (Source:  Mathematics, by Samuel Webber, publ. Cambridge University Press 
1808, page 99.)  This problem was also stated in the Right Triangle unit. 
 

 “Wanting to know the height of an inaccessible object; at the least distance from it, upon 
the same horizontal plane, I took its angle of elevation equal to 58°, and going 100 yards directly 
farther from it, found the angle there to be only 32°; required its height, and my distance from it 
at the first station, the instrument being 5 feet above the ground at each observation.” 
Complete the steps: 
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a)    Evaluate angle DBC. 
 
 
b)   Apply the Law of Sines to find side BC.   
 
 
c)    Find height AB, and the whole height of the 
building. 
 
d)    Find distance CA. 

 
 
 
 
 

Inaccessible Height – General Case 
 

 
Exercise:  Complete the general solution.  Use the Law of Sines as well as right triangle 
trigonometry. 
 
By direct measurement, you have:  sticks or poles of equal length s 

distance d between the poles  
angles of elevation α, β sighting the object’s top C 

 
You want to find height CF. 
 
 

the level ground  

A 

F 
E 

C 

d 
β α 

s 
B 

s 

 

 
a)  Express ∠ BCA in terms of α and β. 
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b)  Look at triangle BCA and write an expression for CA by the Law of Sines.    
 
 

c)  Look at right triangle ECA and write an expression for CE. 
  
 
d)  Write an expression for total height CF. 
  
 

 
 

Distance between Edifice and Wood When I Can’t Get to Either One 
 
The following exercise is taken from a textbook printed in 1864. 

 
“Wanting to know the horizontal distance between two inaccessible objects E and W, the 

following measurements were made:  viz: 
AB = 536 yards      
BAW = 40° 16′      
WAE = 57° 40′ 
ABE = 42° 22′ 
EBW = 71° 07′. 

Required the distance EW.” 
 

The textbook’s author gives the answer but not the process of solution.  However, the 
following use of the Law of Sines is typical of the time.  Complete the steps.  The plan is to get 
to triangle AEW.  From the given, we can find both AE in triangle AEB, and AW in triangle AWB.  
Then on triangle AEW we will apply the Law of Cosines to find EW. 
 
a) In triangle AEB, calculate edifice angle ∠ AEB.     Then use the Law of Sines to calculate 

the distance AE between observation point A and the edifice E. 
  
 
b)  In triangle AWB, calculate angle ∠ AWB to where the woods begin.  Use the Law of 

Sines to calculate the distance AW between A and the woods. 
  
 
c)  In triangle AEW, find the distance EW  between the edifice and the woods.   
 
Source:  a textbook by Charles Davies (1798–1876), Elements of Geometry and Trigonometry, 
from the works of A. M. Legendre, adapted to the course of mathematics instruction in the United 
States, publ. Barnes & Burr, NY 1864.  Problem 6 on page 49. 
 
Sidelight:   Elements of Geometry by  A. M. Legendre (1752–1833) was translated into the 
Hawaiian language.  It was published in 1843 by Lahainaluna High School Press under the title 
Mole o ke anahonua.  
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Triangle Applications  
General Triangle Problems  

Teacher Notes, Answers, and Solutions 
 

Al-Biruni’s Calculation of the Earth’s Size 
 

Al-Biruni’s historical solution 
 
Teacher Notes:  This was a beautiful solution and amazing achievement.  Al-Biruni had only 
sines and no calculator.  To avoid numerical burn-out of your students, accept sufficiently close 
results.  The TI-83+’s results are close to Al-Biruni’s when rounded:  radius 1.3 x 107 cubits, and 
circumference 8.0 x 107 cubits.   
 
Images and explanations of astrolabes are available by linking from these websites:   
http://www.astrolabes.org – Link to the circa 1200 astrolabe in the Getty Museum. 
http://www.mhs.ox.ac.uk – Excellent on-line exhibits at Museum of History of Science at 
Oxford.  
 
Applying the Law of Sines to a right triangle may seem a little strange to those of us who learned 
it in some textbook chapter entitled oblique triangles.  Al-Biruni’s solution here informs students 
that the Law of Sines, as indeed the Law of Cosines, is a property of  all triangles – right as well 
as acute and obtuse.  The Tower Problem of Pitiscus, in the Right Triangle unit, also applies Law 
of Sines to a right triangle.  This was a creative and powerful technique for mathematicians of a 
millennium ago.  

 
a) The Law of Sines ratio for the 2 legs in triangle PFC gives   FP / sin∠ FCP  = FC / sin∠ 

FPC.   Since lines PL and FC are parallel, we have ∠FCP = 34′ .  The ratio therefore is 
  652.055 / sin 34′  = FC / sin 89° 26′  
  FC = 652.055  sin 89° 26′ / sin 34′, so  FC = 65,927.26124 

By the Pythagorean Theorem,  2 2652.055 65,930.48574PC FC= + = . 
 
b) PH = PC + CH = PC + FC = 131,857.747   
 
c) ∠ O =  34′.  The ratio is  OH / sin 89° 26′  = PH / sin 34′.  Therefore,  
   OH = 131,857.747 sin  89° 26′ / sin 34′ = 13,331,728.35 cubits.  The circumference is 

then equal to 83,799,435.36 cubits. 
 
d) One degree is 83,799,435.36/360 = 232,776.2093 cubits.  If we divide by 4000, we get 

58.19 miles per degree.  
 
e) If 1 cubit is 20” = 1 2/3 ft, then 83,799,435.36 cubits = 139,665,753 feet, or about 26,452 

miles, a value slightly larger than the actual circumference. 
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Modern Solution of Al-Biruni’s Problem 
 
a)     cos 34′ =  r / (PF + r) 

 
b)    r = (PF + r)( cos 34′ ) 
       r = PF cos 34′ + r cos 34′  
       r – r cos 34′ = PF cos 34′ 
       r ( 1 – cos 34′ ) = PF cos 34′ 
       r = (652.055  cos 34′ )  / (1 – cos 34′) = 13,332,380.41 cubits 
 
Teacher Note:  Notice here that since cos 34’ is very close to 1, the denominator of the fraction 
is very close to 0.  Therefore, any slight change in the denominator will change the answer by a 
large amount.  Could Al-Biruni have measured the dip angle accurately to within one minute of 
angle? 
 

How Far to an Inaccessible Object 
 
a)    AC / sin B = AB / sin C 
 
b)   AC = AB sin B / sin C 
      AC = AB sin B / sin [180°  – (A + B)] 
 

 
Height and Distance of an Inaccessible Building 

 
Teacher Note:  The author’s concept is recreated below.  However, he wrote his solution in 
logarithms.  Of course today students are readily permitted and expected to employ calculators. 

 
a)   ∠ DBC =  26° 
 
b)   BC / sin 32° = 100 / sin 26°, so BC = 100 sin 32° / sin 26°  = 120.884 
 
c)   In right triangle ABC, sin 58° = AB / BC, so AB = BC sin 58°  =  102.515. 
      The whole height = 5/3 (yards) + AB  = 104.182 yards.  The author’s answer is 104.17 yards.    

The discrepancy comes from rounding.  Essentially the answer is 104.2 yards. 
 
d)   This needs only right triangles.   

tan BCA = BA / CA, so CA = BA / tan BCA = 102.515 / tan 58 = 64.058 yards.  This should   
be rounded to 64.1 yards 
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Inaccessible Height – General Case 
 

Teacher’s Note:  This is a revisit of the inaccessible height problem which was previously 
solved using right triangles.  The advantage of using the Law of Sines is simplicity and brevity.  
The point here is not so much a formula as a process and reminding the students about the role of 
generalization in mathematics.   
 
a)   ∠ BCA =  α – β. 

 
b)  In triangle BCA, we have, by the Law of Sines,    CA = (d sin β) / (sin ∠ BCA) 

 
c)  From right triangle ECA, we get  CE = CA sin α =   (d sin β sin α ) / (sin∠ BCA) 
 
d)  CF = s + (d sin β sin α ) / (sin  ∠ BCA) 
 
 

Distance between Edifice and Wood When I Can’t Get to Either One 
 
Teacher’s Note:  This multi–triangle exercise applies the Law of Sines and the Law of Cosines.  
 Instead of  triangle AEW  with sides AE and AW, we could choose triangle BEW and sides BE 
and BW just as well. 

 
a)   Edifice angle ∠ AEB = 39° 42′.  Then by the Law of Sines,   
     AE / sin ∠ ABE = AB / sin ∠ AEB, so   AE / sin 42° 22′ = 536 / sin 39° 42′ and  
     AE = 536 sin 42° 22′ /  sin 39° 42′  = 565.457. 
 
b)   ∠ AWB = 26° 15′.  Then, by the Law of Sines,  AW / sin ∠ ABW = AB / sin ∠ AWB, or 
      AW / sin 113° 29′ = 536 / sin 26° 15′.  So  AW = 536 sin 113° 29′ / sin 26° 15′  = 1111.506 
 
c)  Teacher’s Note:  Here we depart from the method of solution of the nineteenth–early 

twentieth century.  Before calculators, people used logarithms to shortcut multiplying and 
dividing by decimal numbers.  Here  they would use the Law of Tangents, which lent itself 
better to logarithms.  Today we prefer the Law of Cosines, and that is what the rest of this 
solution will use.   The Law of Tangents can be seen in the unit on Trigonometric Identities.  

 
     EW 2 = AE 2 + AW 2 – 2(AE)(AW) cos ∠ EAW = 882,878.819.  Therefore, EW = 939.616 

yards. The author’s answer was 939.634 yards.       
 
Teacher’s Note:  The above exercise is but one accessible example representing the vast 
application of both planar and spherical trigonometry to surveying, triangulation, and mapping.  
This area provides rich connections with the subject area of the history of a place and its peoples, 
perhaps as close and easily identified with as the students’ own neighborhood. 
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Trigonometric Identities 
Teacher Notes  

 
Description of Unit:  Three categories of identities are practiced here.   “Applying Elementary 
Identities” is a worksheet with space for students to write.  “Applying Sum and Difference 
Formulas, Double Angle and Half Angle Formulas” and “Applying the Law of Sines” are 
reproducible problem sets.  To keep abreast with the text chapters, each category may be used 
when and where the teacher chooses.  For time flexibility, some page breaks within categories 
allow the teacher to reproduce a portion consisting of a few short problems or one long problem, 
rather than assign an entire category.  Solution keys give the process in steps.  All the problems 
associate with mathematicians and therefore suggest historical reasons why the identities arose, 
while text exercises usually are disconnected and listed without rationale.   
 
 The product-to-sum formulas appear in the “Applying Elementary Identities” section 
because here they derive from right triangle ratio definitions of sine and cosine and some 
standard geometry.  Problem #9 shows how the product-to-sum formulas unburdened people’s 
calculations.  Because those formulas have historical importance and are derived from geometry 
and elementary identities, every trigonometry course should include, not skip, them.  If the 
teacher chooses, they can be placed conventionally after the sum and difference identities and 
can be derived from them. 
 
 The variety of problems serves students from geometry to precalculus levels.  There is 
intrinsic value for trigonometry students as well as challenge toward facility in a future calculus 
course.  Although calculators have reduced using identities to process numbers, the mathematical 
structure of trigonometry and the beauty of patterns justify continued interest.  
   
Prerequisites:  “Applying Elementary Identities” requires the right triangle ratio definitions of 
the six trigonometric functions, some geometry (Pythagorean property, and measures of central 
and inscribed angles), and the basic trigonometric identities.  Problems requiring the right 
triangle definitions and geometry are #1, 4, and 6.  Problem #5 requires sometimes laying aside 
the right triangle ratio definition of sine and using the Hindu sine, which was half the chord 
subtended by twice the central angle.  In #5 step b)(3), students may need reminding that the 
circle has radius 3438 units and that the Hindus calculated sin 30o that way. 
 

“Applying Sum and Difference Formulas, Double Angle and Half Angle Formulas” 
begins with a list of the identities required to solve the problems, namely sine and cosine of sum, 
difference, double, and half angles.  One step in problem #8 provides the result of applying the 
Rational Root Theorem, which students might not have learned in Algebra 2.  As an optional 
link, Ptolemy’s derivation of these trigonometric identities can be found in the unit titled 
Development of Ptolemy’s Table.   

 
Finally, besides the Law of Sines, “Applying the Law of Sines” requires both preceding 

categories of identities. 
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Materials:  The textbook provides the nature of trigonometric identities and the general method 
of verifying them.  Reading it and understanding the examples should precede class use of this 
unit.  Handouts of these historical problems may either supplement or replace the text exercises 
depending on the skill objectives set by the teacher.  A calculator will ease the arithmetic in 
“Applying Elementary Identities” #5 c d. 
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Trigonometric Identities 
Applying Elementary Identities 

Student Pages 
 
1.  Al-Battani’s Ratio of Sines.             sun   
An Arab prince of Batan in Syria,  
Al-Battani from Harran (858–929) 
was also an astronomer.  In De Motu    
Stellarum (On the Motion of the Stars),                         L 
he stated that                                            

gnomon or rod 
 
                       S                                   A  
                  
 
 

S =  sin(90 )
sin

L A
A
−  

 
 
 
Al-Battani’s ratio of sines enabled people to determine angle of elevation A of the sun.  

People measured the length S of the shadow made by a vertical gnomon (rod) whose length was 
L.  The shadow studies allowed the Muslims to tell time accurately for prayer, as well as 
maintain a calendar. 
 

From the time of the Greek astronomer Hipparchus (c. 190–120 B.C), who was the father 
of trigonometry, only the sine function had a name.  Thus, Al-Battani used only sine.  However, 
the quantity sin (90o – A) kept occurring in shadow studies.   

 
a) Express sin (90o – A) simply by using another, modern trigonometric ratio.   
 
b) Supposing you knew S and L and only had a table of sines.  How would you determine 

A? 
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2.  Abu’l-Wafa’s Definitions.  The Arab scholar Abu’l-Wafa (940–998) recorded the following 
relationships for the tangent, cotangent,  secant, and cosecant functions: 

tan A = sin A / cos A  sec A = 21 tan A+  

cot A = cos A / sin A  csc A =  21 cot A+  
 

Abu’l-Wafa created sine tables for every ¼ o of arc; his value for sin ½ o is accurate to 8 places.  
He made shadow tables of ratios of cos A / sin A for every 1o.  Mathematicians of his time used 
all 6 trigonometric ratios, the versine (radius – cosine), and half angle relations for sine and 
cosine.   
 
Express Al-Battani’s ratio of sines as a single function of Abu’l-Wafa’s. 
 
 
 
 
 
 
 
 
 
 
 
 
3.  An Elementary Identity of Abu’l-Wafa’s.   Abu’l-Wafa gave this identity: 
 

tan A / sec A = sin A 
 

Prove it using Abu’l-Wafa’s definition of tangent and a modern reciprocal identity. 
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4. Ptolemy’s Theorem, and the Fundamental Identity of Trigonometry. 
 
Ptolemy (c. 85–165 AD) proves the following theorem in the Almagest in order to develop sum 
and difference formulas for chords: 
 
                                                                                      
                                                                                           C                                            B 

The product of the diagonals of any   
quadrilateral inscribed in a circle 
equals the sum of the products of the 
opposite sides.   
 
                                                                               D                                            A 
 

         
                               AC x BD= AB x CD + BC x AD 
 
 (See below for the proof of this result and some of its consequences.)    
  

 
Here we derive from Ptolemy’s Theorem the Fundamental Identity of Trigonometry, that sin2 θ + 
cos2 θ = 1. 
 
a)  Let quadrilateral ABCD be an inscribed rectangle.   
                                                                                                 C    B 
     Then side CD  is equal to what other side? 
     Side AD is equal to what other side? 
     Diagonal BD equals what other side? 
 
                                                                                                D                                                A 

                                     
                                     
                                  θ 

                                
 
 
b)  Substitute for CD, AD, and BD into Ptolemy’s Theorem, to obtain the equation 
 
      ______________________________________________________. 
 
      The result is same as the property known as _______________________________ . 
 
c)   Let AC = 1.  Let θ = ∠ BAC.  Use the definitions that sin θ = opp / hyp and cos θ = adj / hyp, 

to develop sin2 θ + cos2 θ = 1.  
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5.  Aryabhata’s Table of Sines.  The Indian astronomer Aryabhata (475–ca.550) was the first to 
formalize the concept of a sine as a half–chord in a circle.  The Indian definition of the sine of an 
angle,  jya–ardha, was half the chord subtended by twice the central angle.  In this section, we 
will denote the Indian sine of an angle θ by Sine θ.  For example,  
Sine 90o  = ½ chord 180o = ½ diameter = radius.   
                                                                             

                   
 
 
 
     

Hindu process for finding sine b: 
1-Double the angle b, and draw 
the central angle whose size 2b. 
2-Draw the chord intercepted by 
angle 2b 
3-Find half the chord of angle 2b. 
The length of the half chord is 
sine b. 

 
 
 
 
 
 
 
 
a)   Indian radius of the circle:   Aryabhata gave a table of Sines in his Aryabhatiya (about 510)  

for 0o to 90o in steps of 3 ¾ o (1/24 of a right angle).  He used a circle of radius 3438, the 
same value that had been used by the early Greek astronomer Hipparchus (190–120 BCE).  
Why 3438?  Because the angle or arc was to be measured in degrees and minutes, 
Hipparchus (and Aryabhata) decided to use the same measure for the radius of the circle.  
That is, they chose the circumference to be 21600 (which equals 6 × 60 × 60, the total 
number of minutes in a complete circle), and they knew the value of  π = 3.1416.  Show that 
the radius, to the nearest whole number, is 3438. 
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b)   Calculating Sine 30o.  To calculate Sine 30o,   Aryhabhata first doubled 30o to obtain 60o.  He 
did it because, by the Indian definition, the Sine is half the chord subtended by twice the 
central angle. 

 

 
 

Complete the following steps and reasoning: 
 
 

  Step      Reason 
  

(1)  Sine 30o = ½ chord 60o   (1) __?__ 
 
 
 
 

 
(2)  Sine 30o = ½ radius   (2) __?__   

 
 
 

(3)  Sine 30o = 1719    (3) __?__ 
 
 
 
 
c)  Calculating Sine 60o.   
 
   Step     Reason 

 
(1)  Twice 60o is __?__.   (1) __?__ 

 
 

 
(2)  (chord 120o)2 + (chord 60o)2   (2) __?__  (See figure directly below.  Hint:   

= diameter2 If an inscribed triangle has the diameter as a  
side, then it is a right triangle.) 
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(3)  But Sine 60o = ½ chord 120o  (3)  __?__  and algebra. 
      and Sine 30o = ½ chord 60o. 
      Then  2 Sine 60o = chord 120o 
      and    2 Sine 30o = chord 60o. 

 
 

(4)  Then (2 Sine 60o)2 + (2 Sine 30o)2 (4)  Substitution into step __?__. 
        = (2r)2  
 

(5)  Simplifying,     (5)  Algebra. 
 
        __?__    then __?__ = r2 
 
 
 
Now substitute the Indian values of Sine 30o and the radius into that equation. 
 
 
 
Then solve for the value of Sine 60o to the nearest integer. 
 
 
 
 
To compare with the modern value of sin 60o, divide Aryabhata’s value by the circle’s radius.   
 
 
 
 
You should have obtained ≈ 0.86591...  The modern value of sin 60o  is √3 / 2 ≈ 0.86602.... 
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d)   Aryabhata’s Cosines and the half-angle formula.    
 
Aryabhata called the sine of the complementary angle Cosine or kotijya.  He tabulated 

Cosine values by having the same column represent Sine A and Cosine(90o – A) for A from 0o to 
45o.   For example, Sine 30o = Cosine 60o, where we are using the notation Cosine θ to represent 
the Indian cosine.  It follows from the Pythagorean Theorem that Sine2A + Cosine2A = r2 = 
34382. 
 

Sines of 15o, 7 ½ o, and 3 ¾ o were computed by a half-angle formula.  To determine the 
half-angle formula, the Indians probably proceeded somewhat like the following.  Consider the 
central angle θ = AOC inscribed in the circle of radius r = 3438.  Then if AB is drawn 
perpendicular to OC, we know that AB is equal to Sine θ.  Now connect AC, and draw OD 
bisecting angle θ.  Draw DG perpendicular to OC. Then DC is Sine(θ/2). (Why?) 
           
        
 

 
 
 
 
            
   Step       Reason 
 

(1) Triangle DGC is similar to triangle ODC. (1) ∠ODC = ? 
        ∠DCO = ? 
        AA 
 

(2) DC/GC = OC/DC    (2) ? 
 

(3) GC = ½ BC     (3) Triangle ABC is similar to  
triangle DGC (why?) and DC 
= ½ AC (why?) 

 
(4) OB = Cosine θ    (4) Why? 

 
(5) BC = r – OB = r – Cosine θ    (5) From the diagram and             

         substitution. 
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(6) Sine(θ/2)/ ½ (r – Cosine θ) = r/Sine(θ/2) (6) Substitution in (2). 

 
(7) Sine2(θ/2) = ½ r(r – Cosine θ)  (7) Algebra.  Explain. 

 
(8) Sine(θ/2) = 1719(3438 Cosine )θ−   (8) Substitution for r and taking   

       square roots. 
 

(9) By replacing r by 1 in (7) and replacing the Indian Sine and Cosine by the modern 
sin and cos, derive the formula for sin ½ θ. 

 
(e) Calculating Sine 15˚. 
 

(1)  Calculate Sine 15o from Aryabhata’s formula from (d) (8) and your knowledge of   
Cosine 30˚ = Sine 60˚.  Express your answer to the nearest integer. 

 
 
 
 
 

(2)  Calculate sin 15o by using the identity  sin ½ θ = 1 cos
2

θ− and the value cos 30o =  

3  / 2.  Compare the values from (1) and (2) by dividing the Indian value by 3438. 
 
 
 
 
 
 
(3)  Calculate the Indian values of Sine 7 ½ ˚ and Sine 3 ¾ ˚.  You will first need to 

calculate Cosines, but these can be found from the Sine values by using the equation 
Sine2A + Cosine2A = r2 = 34382.   By use of  the Sine values for 7 ½ ˚ and 3 ¾ ˚, the 
Indians obtained tables of Sines of angles from 3 ¾ o to 90o in steps of 3 ¾ o.  They 
attained greater precision for astronomical work by discovering interpolation methods 
and approximation formulas.  In 1150 Bhaskara gave a system for finding the sine for 
arcs closer than 3 ¾ o. 
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6. Viète’s Sum of Sines.  Viète (1540–1603) showed that  
 

sin x + sin y = 2 sin ½ (x + y) cos ½ (x – y). 
 

He did this using geometry, and the definitions sin A = opposite / hypotenuse and cos A = 
adjacent / hypotenuse.  Complete the steps in Viète’s development: 
 
1)  Choose the radius of the circle to be 1, with ∠AOP = x = measure of arc AP and ∠COP = y = 

measure of arc CP.   Then sin x = length of segment __?__, and sin y = length of segment 
__?__. 

                

                             
                                                                                      
 2)  But length __?___ = CD.  Then sin x + sin y = AB + BE = length of segment __?__.   Notice 

arc AP = arc PF = x, and that therefore arc CF = x – y.   
                                                                                                                                    
                     
3)  Notice that arc CF is intercepted by the inscribed angle ∠ FAC.  Thus ∠ FAC = __?__. 
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4)  In the right triangle AEC, cos ∠ FAC =  __?__ / AC.  Then AE  =  __?__.       

 
  

5)  We now show that AC = 2 sin ½ (x + y) as follows:  Look at triangle AOC.  It is isosceles, 
with equal sides __?__ and __?__.    

 

                     
 

       Draw the altitude OM  from O to AC.   Then triangle AOM  is a right triangle, with  
       sin ∠ AOM = __?__.   

 
       ∠ AOC intercepts arc AC = x + y.    

 
In isosceles triangle AOC, the altitude OM bisects ∠ AOC and also side AC.   It follows   
that  ∠ AOM = ½  ∠ __?__  = ½ (x + y), and sin ∠ AOM = sin __?__.  It also follows that 
AC = 2 __?__ , and we conclude that AC = 2 sin ½ (x + y). 

 
6)     Finally, the facts are gathered: 
 
        From step (2), sin x + sin y = AE 
        From step (4), AE = AC cos ½  (x – y) 
        From step (5), AC = 2 sin ½ (x + y) 
 
        Therefore, sin x + sin y = __?__. 
 

We can derive a similar formula for cos x + cos y  by using the identity cos x = sin (90 – x) and 
the formula just derived: 

cos x + cos y = sin(90 – x) + sin(90 – y) =  2 sin ½(180 – x – y)cos ½(y – x) 

 = 2 sin(90 – ½(x + y))cos ½(y – x) =  2 cos ½(y + x)cos ½(y – x). 
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7. Difference of Sines.  An identity for sin x – sin y can be developed from Viète’s procedure for 
the sum of sines (see problem 6), by drawing x and y on the same side of the radius OP.  
However, in this exercise, use an  “opposite angle” relationship instead, to show from Viète’s 
formula for sin x + sin y, that  
 

sin x – sin y = 2 sin ½ (x – y) cos ½ (x + y). 
 
The opposite angle relationships we need here are sin (–A) = – sin A and cos (–A) = cos A. 
  
It follows that  sin x – sin y = sin x + (– sin y) =  sin x + sin (–y) = __?__ 
 
 
Now, using the same idea as in the previous problem, derive the formula 

 
cos x – cos y = 2 sin ½(y – x)sin ½(y + x) 

 
 
 
 
 

8. Viète’s Product-to-sum Identity for sin A cos B.   Into his sum of sines identity, Viète put ½ 
(x + y) = A and ½ (x – y) = B.  Substitute just as he did, and simplify, to develop a “product-to-
sum” formula for sin A cos B.  You should get 
 

sin( ) sin( ) 2sin cosA B A B A B+ + − = . 
 

Using similar techniques with the other three formulas developed in 6 and 7, derive the following 
three “product-to-sum” and “product-to-difference” formulas: 
 

cos( ) cos( ) 2cos cosA B A B A B− + + =  
 

sin( ) sin( ) 2sin cosA B A B B A+ − − =  
 

cos( ) cos( ) 2sin sinA B A B B A− − + =  
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9.  Using the Product-to-Sum and Product-to-Difference Identities. By the sixteenth century, 
trigonometry had to meet the demands of accuracy in surveying, navigation, and calendar 
making as well as astronomy.  Tables by Georg Joachim Rheticus (1514–1576), who chose his 
circle radius to be 10,000,000, contained sine and cosine values of up to 9 digits.  Rheticus 
started tables of tangent and secant based on a radius of  1,000,000,000,000,000 (=1015), a feat 
completed after his death by his student Otho.  But often, to solve problems involving triangles, 
mathematicians had to multiply sine values or cosine values together. Multiplication was done by 
hand without benefit of modern decimal notation, and it was therefore extremely tedious to 
multiply nine–digit numbers.  Besides, such long multiplications were very prone to error.  So 
mathematicians used the product-to-sum and product to difference formulas to replace 
multiplication by addition or subtraction, much simpler operations. 
 
Do the following example without a calculator so that you can play the role of a sixteenth 
century mathematician. 
 
Multiply:  sin 28o × sin 9o.   
 
Method 1, straight multiplication. 
 
In a table, you find that sin 28o = 0.469472 and sin 9o = 0.156434.  (We are only using six places 
rather than nine or ten.) Now multiply the values for sin 28o and sin 9o by hand.  You may not 
use your calculator. 
 
 
 
 
 
 
 
 
Method 2, using a product-to-difference identity. 
 
Use the identity   2 sin B sin A = cos (A – B) – cos (A + B) from problem 8 and this information: 
 
      sin 28o = 0.469472  cos 19o = 0.945519 
     sin 9o =  0.156434  cos 37o = 0.798636 
 
Remember, you may not use your calculator even to add and subtract.  
 
 
 
 
 
Which method is easier? 
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Solution Key  
Applying Elementary Identities 

 
1.  Al-Battani’s Ratio of Sines. 
 
a)  Cosine is the cofunction of sine; sin (90o – A) = cos A. 
 

b)  We know that sin(90 )
sin

S
L A

−
=

A .  Let C be the known value S/L.  Then  

2 2
2

2 2

sin (90 ) sin 11
sin sin sin

A AC
A A
−

+ = + = 2 A
. 

It follows that 2
2

1
1

A
C

=
+

sin  and therefore that 2

1
1

A
C

=
+

sin .  Once we know sin A, we can 

find A by using the table of sines in reverse. 
 
2.  Abu’l-Wafa’s Definitions. 
 

  S = L cos A / sin A = L cot A 
 
3.  An Elementary Identity of Abu’l-Wafa’s. 
 

tan A / sec A  = (sin A / cos A) / sec A by Abu’l-Wafa’s definition of tangent 
  

sin 1 sin sin
cos sec cos sec

A A A
A A A A

  = =  
  

=  

 
 since cos A sec A = 1 by a reciprocal identity. 
 
4.  Ptolemy’s Theorem and sin2 θ + cos2 θ = 1. 
 
a)    AB, BC, AC 
 
b)    AC2 = AB2 + BC2 
       Pythagorean Theorem 
 
c)    sin θ = BC / AC, then BC = AC sin θ 
       cos θ =  AB / AC, then AB = AC cos θ 
      Substitute into AC2 = AB2 + BC2.   
      Then AC2  = (AC cos θ)2 + (AC sin θ)2 
         AC2    = AC2 cos2 θ + AC2 sin2 θ 
             1   = cos2 θ + sin2 θ  

Therefore sin2 θ + cos2 θ = 1.  
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5.  Aryabhata’s Table of Sines. 
 
a)         C = 2 π r 
 r = C/ 2π = 21600 /2 π  
 r = 3437.739 ≈ 3438 
 
b) (1)  The Indian Sine is half the chord subtended by twice the central angle. 

(2)  chord 60o = radius, because the chord of 60˚ forms the base of an equilateral triangle, 
the two other sides being radii of the circle.  Thus the chord is equal to a radius. 

 (3)  1719 is half of the radius 3438. 
 
c)         (1) 120o.  We need this because the Indian Sine is half the chord subtended by twice the       

central angle. 
(2) An inscribed triangle with a diameter for one side, is a right triangle.  (An inscribed 

angle intercepting a semicircle is a right angle.) 
 (3) Indian definition of Sine. 
 (4) Substitution into step #2. 
 (5) 4 Sine2 60o + 4 Sine2 30o = 4 r2 

     Simplifying, then Sine2 60o + Sine2 30o = r2. 
     Substituting the Indian values gives Sine2 60o + 17192 = 34382. 
     Then Sine2 60o = 34382 – 17192  = 8864883 

               Sine 60o   = 2977.395338... ≈ 2977 
     In comparison, 2977/3438 = 0.865910413... 

 
d) In the diagram, DC is half the chord subtending the angle θ, which is twice the angle θ/2.  

Since the Indian sine is half the chord subtended by double the angle, DC is Sine(θ/2).  
The reasons in the derivation of the half-angle formula are as follows: 

 
(1) ∠ODC = ∠DGC, because both are right angles; ∠DCO = ∠DCG, because they are 

the same angle.  Thus two angles in triangle DGC are equal to two angles in triangle 
ODC, and the triangles are similar by AA. 

 
 (2) Corresponding sides in similar triangles are proportional. 
 

(3) Triangles ABC and DGC are similar, because they are both right triangles and they 
share a common angle.  So they are similar by AA.  Now  DC = ½ AC, because the 
angle bisector OD  bisects the base of the isosceles triangle AOC.  Therefore, since 
corresponding sides in similar triangles are proportional, we have GC/BC =  DC/AC = 
½; so GC = ½ BC. 

 
 (4) OB is the Sine of ∠OAB, so it is the Cosine of the complementary angle θ. 
 
 (5) This step follows from the diagram. 
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(6)  This step follows by substituting the values for DC, GC, and OC into the proportion  
statement (2). 

  
(7)  Use cross multiplication to turn the proportion statement of (6) into this equation. 

 
 (8)  Since r = 3438, we substitute this value into (7) and take the square root. 
 

(9) If we replace r by 1 and the Indian functions by the modern ones in (7), we get the 

equation  ( )2 1/ 2 (1 cos )
2

θ = −sin .  By taking square roots of both sides, we get the 

modern half-angle formula: 

θ

( ) 1 cossin / 2
2

θ
θ

−
= . 

 
(e)  (1)  Sine 15˚ = Sin ½ (30o) = 1719(3438 Cosine30)−  

        =  1719(3438 Sin 60 )−  

        =  1719 3438 2977( )−  =  1719 461( )  ≈ 890 
 

(2)  We have sin 15˚ = sin ½ (30o) = 
1 30

2
− cos o

 =  
1

3
2

2

−
≈ 0.25882 

 
       To compare,  890 / 3438  ≈ 0.25893. 

 
(3)  We first calculate Cosine 15˚ = 2 23438 Sine 15− =    

2 23438 890 11027744 3321− = =  
      Therefore, Sine 7 ½ ˚ = Sine ½(15˚) =  

1719(3438 Cosine15 ) 1719(3438 3321) 201123 448− = − = = . 
 

     Next, Cosine 7 ½ ˚ = 2 2 2 213438 Sine 7 3438 448 11619140 3409.
2

− = − = =  

 So Sine 3 ¾˚ = Sine ½(7 ½˚) = 
11719(3438 Cosine7 ) 1719(3438 3409) 49851 223.
2

− = − = =  

 
6.  Viète’s Sum of Sines. 
 
(1)   sin x = length of segment AB; sin y = length of segment CD. 
 
(2)   BE = CD; AB + BE = AE. 
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(3)  ½ (x – y) 
 
(4)   cos ∠  FAC = AE/AC ;  AE =  AC cos ½ (x – y) 
 
(5)       The equal sides are  OA, OC;  sin ∠ AOM =  AM / OA = AM / 1 = AM ; 
       ∠ AOM = ½  ∠ AOC ;  sin ∠ AOM = sin ½ (x + y);  AC = 2 AM 

 
(6)   sin x + sin y = AE =  AC cos ½ (x – y) = 2 sin ½ (x + y) cos ½ (x – y) 
 
7.  Difference of Sines. 
 
sin x – sin y  = sin x + sin (–y) =   2 sin ½ [x + (–y)] cos ½ [x – (– y)] 
          =  2 sin ½ (x – y) cos ½ (x + y) 
 
cos x – cos y = sin(90– x) – sin(90 – y) = 2 sin ½(y – x) cos ½(180 – x – y)  
          = 2 sin ½(y – x) cos(90 – ½(x + y) = 2 sin ½(y – x) sin ½(y + x) 
 
8.  Viète’s Product-to-sum Identity for sin A cos B 
 
Let A = ½(x + y) and B = ½ (x – y).  Then A + B = x  and A – B = y. Substituting into the 
formula sin x + sin y =  2 sin ½ (x + y) cos ½ (x – y) gives sin (A + B) + sin (A – B) =  
2 sin A cos B. 
If we let A = ½(x + y) and B = ½(y – x), the formula cos x + cos y = 2 cos ½(y + x) cos ½(y – x) 
becomes cos(A – B) + cos(A + B) = 2 cos A cos B. 
Similar substitutions produce the other two formulas. 
 
9.  How the Product-to-sum Identities Made People’s Work Easier. 
 
Method 1, straight multiplication: 
  

0.469472     
 0.156434     

   1877888 
            1408416 
                     1877888       
                   2816832      
                 2347360      
                 469472              
            0.073441382848        
 
Method 2, using a product-to-difference  identity: 
 
cos (28 – 9)o – cos (28 + 9)o =   cos 19o – cos 37o = 0.945519 – 0.798636 = 0.146883.  
                  
Therefore, 2 sin 28o × sin 9o = 0.146883 and  sin 28o × sin 9o = 0.0734415 
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Trigonometric Identities  
Applying Sum and Difference Formulas, Double Angle 

and Half Angle Formulas 
Student Pages 

 
This set of problems uses the following identities: 
 
 sin (A + B) = sin A cos B + cos A sin B 
 sin (A – B) = sin A cos B – cos A sin B 
 cos (A + B) = cos A cos B – sin A sin B 
 cos (A – B) = cos A cos B + sin A sin B 
 sin 2A = 2 sin A cos A 
 cos 2A = cos2 A – sin2 A = 2 cos2 A – 1  = 1 – 2 sin2 A 

 sin ½ A = ±  
−1

2
cos A

 cos ½ A = ±  
+1

2
cos A

 
1.  Ibn Yunus’s Product-to-sum Formula.   Ibn Yunus (950–1009) was an astronomer who 
lived in Cairo, Egypt.  He compiled values of sine and tangent by 1o accurate to 8 places.  The 
product-to-sum identities provided a way (“prosthaphaeresis”, Greek for addition and 
subtraction) to rephrase a multiplication problem as addition or subtraction, which was easier as 
we have seen above.  Ibn Yunus used this identity: 
 

2 cos x cos y = cos (x + y) + cos (x– y) 
 
Although we have already derived this formula one way, in the previous section, derive it anew 
by starting with the right side of the equation and using some of the identities above. 
 
 
2. A Sine Formula from Viète’s Canon.   The Canon mathematicus seu ad triangula (1579) of 
Francois Viète (1540–1603)  was the first European book to organize all six trigonometric 
functions in the solution of plane and spherical triangles.  Verify this identity, which comes from 
Viète’s Canon:  
 

sin A = sin (60o + A) – sin(60o – A). 
 

Begin by applying the sum and difference formulas for sine to the right side. 
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3. Abu’l-Wafa’s Sine of a Double Angle.   Abu’l-Wafa said that in a circle 
 

chord A       =   chord (180o – ½ A) 
chord ½ A     r 

 
Show that this is equivalent to the double angle sine identity, sin 2B = 2 sin B cos B, by 
completing the steps below: 
 
a)  The Indian definition of a sine, also used by Islamic mathematicians,  was that in a circle, the 

sine of an arc is half the chord subtended by twice the central angle.  That is,  
sin θ = ½ chord 2θ. 

 

 
 
 
               b 
    b 
      r   
   
  

Hindu process for finding sine b: 
1- Double the angle b, and draw the 

central single whose size is 2b. 
2- Draw the chord intercepted by 

angle 2b. 
3- Find half the chord of angle 2b. 

The length of half chord is sine b. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

In Abu’l-Wafa’s formula, A is the “double angle” of ½ A.  The left numerator should 
eventually contain sin 2B, and the denominator sin B.  However, sin 2B = ½ chord 2(2B) =  
½ chord 4B.  This means just putting A equal to 2B won’t work; we need to put A = 4B. 
 
Let A = 4B.  First, express chord A and chord ½ A in terms of B. 

 
 chord A = 
 and 
 chord ½ A =  
 
b)  Express sin 2B in terms of chord A, and express sin B in terms of chord ½ A. 
 
 sin 2B = 
 and 
 sin B = 
 
c)  Express chord (180o – ½ A) in terms of B. 
 
 chord (180o – ½ A) = 
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d)  Abu’l-Wafa’s formula said that 
 

chord A       =   chord (180o – ½ A) 
chord ½ A      r 

 
Substitute the expressions you found into the place of chord A, chord ½ A, and  
chord (180o – ½ A). 

 
e)  Use a cofunction identity to simplify that equation, and let radius r = 1 unit.  Finally write the 

formula for sin 2B. 
 
 
4.  The Indian Versine Function.   Mathematicians of India used another function besides the 
six standard one, namely, the versine of an arc, defined, for circles of radius 1, as versin A = 1 – 
cos A.  They considered the versine to be the sine turned (versed) through 90o onto its side.  In 
seventeenth century Europe, versine became the second most important function, after sine. 
 
 
 

 
              
        
Prove this identity, used by Indian mathematicians:  versin 2A = 2 sin2 A 
 
 
5.  Viète’s Tangent and Cotangent of a Half Angle.   Prove these 2 identities from Viète’s 
Canon mathematicus seu ad triangula (1579): 
 
a)  csc A – cot A = tan (A/2) 
 
b) csc A + cot A = cot (A/2) 
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6. Ulugh Beg’s Sine Cube Formula.   Ulugh Beg (1393–1449), ruler of a domain in central 
Asia centered at Samarkand, computed sine tables for every 1’ of arc.   To do this, he used a 
method pioneered by Ghiyath al–Din Jamshid al–Kashi (d. 1429), an astronomer in his employ.  
Prove this identity used by al–Kashi:  
 

sin 3A = 3 sin A – 4 sin3 A  
 

Hint:   Start with sin 3A = sin (A + 2A). 
 
Al-Kashi used this identity to calculate the sine of 1º to 18 decimal places.  Let x = sin 1º.  Then 
the identity becomes 3x – 4x3 = sin 3º.  Since al-Kashi could  calculate the sine of 3º to as many 
decimal places as he wanted, using the difference formula and the half-angle formula, this 
equation was a cubic equation whose solution was x = sin 1º.  He then figured out an iterative 
method of solving this equation to as many decimal places as necessary. 
 
7. Viète’s Formula for Cosine of a Multiple Angle.   Viète (1540–1603) was the first 
mathematician to apply algebra to trigonometry in a systematic manner.  He developed cos 2A, 
cos 3A, ..., cos 10A as functions of cos A by means of the recurrence formula    
 

cos nA = 2 cos A cos (n – 1) A – cos (n – 2) A. 
 

a)   Illustrate the use of the formula by using it to calculate cos 2A; that is, substitute n = 2 into 
the recurrence formula, and simplify.  Afterwards, compare the result with your standard 
double angle formula for cos 2A. 

 
b)   Use Viète’s recurrence formula to develop an identity for cos 5A in terms of cos A.  (You 

will need to use the recurrence formula several times.) 
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8.  Angle Trisection, a problem answered after 2000 years.   The finding of a general method 
for trisecting an angle with only compass and straightedge was one of the three great unsolved 
problems of Greek antiquity.   In 1837 Pierre Wantzel (1814–1848) used trigonometry to finally 
prove that the construction was impossible.  Wantzel took 60o as a counterexample and used an 
identity for cos 3A.  Complete the following steps in order to learn his process: 
             

  

 
 
 
 
a)   In the unit circle (radius = 1) shown, ∠ NOQ is a central angle with measure 60o.  Suppose  
      ∠ NOQ is trisected as shown with ∠ POQ = 20o.  Draw PQ ⊥ OQ , making triangle POQ  a 

right triangle.  Express the ratio OQ / OP as a trigonometric function of 20o.  Then by simple 
algebra, find an expression for OQ. 

 
b)  Prove the triple angle identity:   cos 3A = 4 cos3 A – 3 cos A.  (Begin with  
     cos 3A = cos(A + 2A).) 
 
c)  Let A = 20o.  Then, substituting into the above equation, cos 60o = cos 3(20o) = __?__ 
 
d)  Evaluate cos 60o, which is one of the key values you should have memorized.  Then multiply 

the equation by 2 to clear of fractions.  Write the resulting equation. 
 
e)  Substitute x = 2 cos 20o, and write the resulting equation in terms of x. 
 
f)   Wantzel reasoned that constructing a length, such as base OQ in triangle POQ, would be 

equivalent to finding an algebraic solution to an equation which was expressible in terms of 
rational numbers and square roots.  In step e, you should have arrived at the equation  

      x 3 – 3 x – 1 = 0.  Although this cubic equation is solvable, its solution involves cube roots 
and therefore cannot be expressed using square roots alone.  It follows that OQ cannot be 
constructed using straightedge and compass and therefore that an arbitrary angle cannot be 
trisected using those tools. 
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Solution Key  
Applying Sum and Difference Formulas, Double Angle 

and Half Angle Formulas 
 
 
1.  Ibn Yunus’s Product-to-sum Formula. 
 
 cos (x + y) + cos (x –  y) =  (cos x cos y – sin x sin y) + (cos x cos y + sin x sin y) 
        =  2 cos x cos y 
 
2.  A Sine Formula from Viète’s Canon. 
 
 sin (60o + A) – sin(60o – A)  

= (sin 60o cos A + cos 60o sin A) – (sin 60o cos A – cos 60o sin A) 
  =  (cos 60o sin A) – ( – cos 60o sin A) 
  =  2 cos 60o sin A 
  = 2 ( ½) sin A 
  = sin A 
 
3. Abu’l-Wafa’s Sine of a Double Angle. 
 
Plan:  The Indian sine was defined as sin θ = ½ chord 2θ.  Looking at Abu’l-Wafa’s formula, A 
is the “double angle” of ½ A.  We want the left numerator to represent sin 2B, and the 
denominator to represent sin B.  However, sin 2B = ½ chord 2(2B) = ½ chord 4B.  This means 
just putting A equal to 2B won’t work; we need to put A = 4B.  
 
a) Let A = 4B; then chord A = chord 4B and chord ½ A = chord 2B. 

 
b) sin 2B = ½ chord 2( 2B) = ½ chord 4B, and sin B = ½ chord 2B.  

 
c) Since A = 4B, then ½ A = 2B, and chord (180o – ½ A) = chord (180o – 2B). 
 
d) chord A = chord 4B by a), and chord 4B = 2 sin 2B by b), so chord A = 2 sin 2B. 
 Also, chord ½ A = chord 2B by a), and chord 2B = 2 sin B by b), so chord ½ A = 2 sin B. 
 Likewise, chord (180o – ½ A) = chord (180o – 2B) = 2 sin ½ (180o – 2B) = 2 sin (90o – B). 
 Substituting, we get: 
 

    2 sin 2B      =     2 sin (90o – B)    
      2 sin B                        r 
 
e)      sin 2B      =        2 cos B    
       sin B                        r 
 
 Then sin 2B =  sin B (2 cos B), or sin 2B = 2 sin B cos B. 
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4.  The Hindu Versine Function. 
 
  versin 2A = 1 – cos 2A = 1 – (1 – 2 sin2 A) = 2 sin2 A 
 
5. Viète’s Tangent and Cotangent of a Half Angle. 
  

a) 

1 cos
sin( / 2) 1 cos2tan( / 2)
cos( / 2) 1 cos1 cos

2

A
A AA
A AA

−
−

= = =
++

 

 

 = 
( cos )( cos
( cos )( cos
1 1
1 1

− −
+ −

A A
A

)
)A

  =    
( cos )

cos
1
1

2

2

−
−

A
A

    =     
2

2

(1 cos )
sin

A
A

−  

 

 1 cos 1 cos csc cot
sin sin sin

A A A A
A A A

−
= = − = − . 

  
 Therefore, csc A – cot A = tan (A / 2). 
 

b) cot (A / 2) = 1 / tan(A / 2) = 
1
1

+
−

cos
cos

A
A

  

 

 =     
( cos )( cos
( cos )( cos
1 1
1 1

+ +
− +

A A
A

)
)A

       =     
( cos )

cos
1
1

2

2

+
−

A
A

     =   
( cos )

sin
1 2

2

+ A
A

 

 

 1 cos 1 cos csc cot
sin sin sin

A A A A
A A A

+
= = + = + . 

 
 Therefore, csc A + cot A = cot (A / 2). 
 
6. Ulugh Beg’s Sine Cube. 
 
 sin 3A = sin A cos 2A + cos A sin 2A 
  = sin A (cos2 A – sin2 A) + cos A (2 sin A cos A) 
  = sin A cos2 A – sin3 A + 2 sin A cos2 A 
  = 3 sin A cos2 A – sin3 A 
  = 3 sin A (1 – sin2 A) – sin3 A 
  = 3 sin A – 3 sin3 A – sin3 A 
 sin 3A = 3 sin A – 4 sin3 A 
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7. Viète’s Formula for Cosine of a Multiple Angle. 
 
a) Substituting n = 2, cos 2A = 2 cos A = 2 cos A cos (2 – 1)A – cos (2 – 2)A 
      = 2 cos A cos A – cos 0 
      = 2 cos2 A – 1 
 The result is the same as the standard double angle formula for cos 2A. 
 
b) n = 5, cos 5A = 2 cos A cos 4A – cos 3A 
 

But cos 4A = cos 2(2A) by double angle formula 
        = 2 cos2 2A – 1 

          = 2 (2 cos2 A – 1)2 – 1 
        = 2 (4 cos4 A – 4 cos2 A + 1) – 1 
        = 8 cos4 A – 8 cos2 A + 1 
 

Also cos 3A = 2 cos A cos 2A – cos A        by Viète’s recurrence formula 
          = 2 cos A (2 cos2  A – 1) – cos A 
          = 4 cos3 A – 3 cos A 
 

Finally cos 5A = 2 cos A cos 4A – cos 3A 
              = 2 cos A (8 cos4 A – 8 cos2 A + 1) – (4 cos3 A – 3 cos A) 
              = 16 cos5 A – 16 cos3 A + 2 cos A – 4 cos3 A + 3 cos A 
              = 16 cos5 A – 20 cos3 A + 5 cos A  
 
8. Angle Trisection, a problem answered after 2000 years. 
 
a) OQ / OP = cos 20o, so OQ = OP cos 20o; since OP = 1, therefore OQ =  cos 20o 
 
b) One way is this: 

cos 3A = cos (A + 2A)  
  = cos A cos 2A – sin A sin 2A 
  = cos A (cos2 A – sin2 A) – sin A (2 sin A cos A) 
  = cos3 A – cos A sin2 A – 2 sin2 A cos A 
  = cos3 A – 3 sin2 A cos A 
  = cos3 A – 3 cos A (1 – cos2 A) 
  = cos3 A – 3 cos A + 3 cos3 A 
 cos 3A = 4 cos3 A – 3 cos A 
 
c) cos 60o = cos 3(20o) = 4 cos3 20o – 3 cos 20o 
 
d) Since cos 60° = ½, we have, by substitution, ½ = 4 cos3 20o – 3 cos 20o. 
 Therefore, 1 =  8 cos3 20o – 6 cos 20o 
 
e) 1 =  (2 cos 20o) 3 – 3 (2 cos 20o) 
 1 = x3 – 3 x  or     x3 – 3 x – 1 = 0 
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Trigonometric Identities 
Applying the Law of Sines 

Student Pages 
 
1. Mollweide’s Formula for (a – b)/c, where a, b, and c are sides of a triangle.  
 

Karl Mollweide (1774–1825) was an astronomer and teacher in Leipzig, Germany.  
In later life, Mollweide preferred mathematics over astronomy and became chair of mathematics 
at Leipzig.  Mollweide designed a map projection of the world which preserves angles.   
 

A form of Mollweide’s identities is found in Newton (1707) and in a trigonometry text by 
Thomas Simpson (1748).  These beautiful identities state that a certain ratio combining sides 
equals a ratio combining angles, with both numerators involving a difference, and with 
corresponding order!  They are useful as a check after solving a triangle, since they contain all 3 
sides a, b, c and all 3 angles A, B, C. 
 

Complete the steps in the proof that  sin(( ) / 2)
cos( / 2)

a b A B
c C
− −

=  

   
a) Let a, b, and c be the sides in a triangle, and the 3 corresponding angles opposite be A, B, 

and C, as standard. 
 

 
sin sin sin

a b c
A B

= =
C

.         Why? 

 
 

b) By algebra,  sin
?

a A
c

=  and ?
sin

b
c C

= . 

 

c) By subtracting rational expressions, we get sin sin
?

a b A B
c
− −

= . 

 

d) Tell why  2cos(( ) / 2)sin(( ) / 2)
2sin( / 2)cos( / 2)

a b A B A B
c C C
− + −

= . 

   
Hints:  See Applying Elementary Identities, problem 7, Difference of Sines. 
Also see the sine double angle identity, and apply sin C = sin 2((1/2)C) 

 
e)   But A + B = 180o – C, because __?__. 
 Then by algebra, ½ (A + B) = 90o – ½ C. 
 
f)    Use the result of step e to write an expression for cos ((A + B)/2), and simplify into a sine 

expression. 

 147 



 

g) Step d said that 2cos(( ) / 2)sin(( ) / 2)
2sin( / 2)cos( / 2)

a b A B A B
c C C
− + −

= . 

 
Substitute your result from step f  for cos((A+B)/2).  You should then have: 

 
2sin( / 2)sin(( ) / 2)

2sin( / 2)cos( / 2)
a b C A B

c C C
− −

= . 

 
Simplify the ratio on the right side of the equation, and write the result as Mollweide’s 
formula for (a – b) / c. 

         
2. Mollweide’s Formula for (a + b)/c, where a, b, and c are sides of a triangle.  
 
Let triangle ABC have sides a, b, and c opposite its respective angles A, B, and C, as standard. 
 

Derive the identity:  cos(( ) / 2)
sin( / 2)

a b A B
c C
+ −

=  

 
Hint:  See problem 1, Mollweide’s Formula for (a – b) / c. 
 
3. The Law of Tangents (Viète, around 1580).  This is another beautiful identity! 
 

tan ½ (A + B)    =   a + b 
              tan ½ (A – B)          a – b  
 
Why is this true?  Find out by performing the steps below: 
 
a) Write the left side in terms of sines and cosines. 
 
b) Simplify the compound fraction. 
   
c)  Apply Viète’s identities for the sum of sines and the difference of sines.   Hint:  See 

Applying Elementary Identities, problems 6 and 7. 
 
d) Use a Law of Sines relationship, and simplify.  Awesome! 
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Solution Key 
Trigonometric Identities 

Applying the Law of Sines 
 
 
1. Mollweide’s Formula for (a – b)/c, where a, b, and c are sides of a triangle. 
 
a) The equation is the Law of Sines. 
 
b) sin C, sin B 
 
c) sin C 
 
d) For the numerator on the right, see the identity in Applying Elementary Identities, 

problem 7, Difference of Sines. 
 For the denominator, let sin C = sin 2( ½ C) and use the double angle sine identity. 
 
e) The sum of the angles of a triangle is 180o.  Thus angles A + B + C = 180o.  Then simply 

subtract C from both sides of the equation. 
 
f)  cos ½ (A + B)  = cos (90o – ½ C) 
    = sin ½ C   because sine and cosine are cofunctions. 
 
g) On the right side of the equation, divide numerator and denominator by their common 

factor 2 sin ½ C.  Therefore  
a – b   =    sin ½ (A – B) 

     c        cos ½ C 
 
2. Mollweide’s Formula for (a + b)/c, where a, b, and c are sides of a triangle. 
 

 
sin sin sin

a b c
A B

= =
C

   

 

 sin
sin

a A
c C

=  and sin
sin

b B
c C

= . 

 
 a + b = sin A + sin B 
   c    sin 2( ½ C) 
 

a + b = 2 sin ½ (A + B) cos ½ (A – B)   by Viete’s formula that sin A + sin B  
   c        2 sin ½ C cos ½ C         = 2 sin ½ (A + B) cos ½ (A – B) 
 
 

But A + B = 180o – C, so ½ (A + B) = 90o – ½ C. 
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Then sin ½ (A + B) = sin (90o – ½ C) = cos ½ C             
 
Then    a + b      =   2 cos ½ C cos ½ (A – B)   

                c       2 sin ½ C cos ½ C  
 

Therefore    a + b  =    cos ½ (A – B) 
       c        sin ½ C 
 
3. The Law of Tangents (Viète, around 1580). 
 
a)  sin ½ (A + B) 
            cos ½ (A + B)___      
  sin ½ (A – B) 
  cos ½ (A – B) 
 
b)   sin ½ (A + B) cos ½ (A – B) 
            cos ½ (A + B) sin ½ (A – B) 
 
c) sin ½ (A + B) cos ½ (A – B) =  2 sin ½ (A + B) cos ½ (A – B) 

cos ½ (A + B) sin ½ (A – B)   2 cos ½ (A + B) sin ½ (A – B) 
 

     = sin A + sin B 
      sin A – sin B 
 
d)  According to the Law of Sines,   sin A           =         sin B 
                                a                b 

Then  sin A = (a / b) sin B, so 
 

sin A + sin B  = (a / b) sin B + sin B 
sin A – sin B   (a / b) sin B – sin B 

 
    =  (a / b) + 1 ×      b 
     (a / b) – 1         b  
    = a + b 
     a – b 

 
Therefore,    tan ½ (A + B) =  a + b    , and we are done. 

   tan ½ (A – B)     a – b 
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Spherical Trigonometry 
Teacher Notes 

 
 
 
Description of Unit:  Most high school texts do not include spherical trigonometry. Thus the 
commentary on the historical development of the subject is a relatively long description. This 
unit would be a good resource for students who wish to work independently on a mathematics 
topic not covered in a standard high school course. After the historical discussion, there is a list 
of the theorems used in spherical trigonometry. The first page covers the formulas most often 
needed to solve problems and the only ones necessary for use in the student exercises. The 
second page lists the half angle formulas. An advanced student might be interested in deriving 
these. They are included to show the connections between plane and spherical formulas. 
 
 Three spherical trigonometry proofs are given and student exercises included: 
  
    1. The proof of the right triangle theorems for spherical trigonometry  
        provides a complete discussion of the relationships of plane and 
        spherical triangles and shows how the sine and cosine of angles can be 
        converted to sines or tangents of the sides. Napier's Rule is explained; it is  
        suggested that students try to generate all ten right triangle formulas 
        using the rule. 
    2.  Student exercises on right triangles are short and are included to verify 
         that the formulas studied can be applied to specific triangles. 
    3.  Proof of the Law of Sines 
    4.  Proof of the Law of Cosines 
    5.  Exercises on Oblique Triangles include considering ambiguous cases. 
         These can be extended to the development of rules for congruency of 
         spherical triangles. The questions on distances between cities involve 
                    understanding how to connect longitude and latitude to solving spherical 
                    triangles and finding qibla directions (which way a person must  

        turn to face Mecca).   
 
 
 A teacher wishing to introduce the idea of spherical triangles to a class without delving 
into proofs should give students the first page of formulas and then show them how to find the 
distance between two cities using longitude and latitude. If this is done, it is suggested that the 
proof of spherical right triangle relationships be given to students for reading at home. The table 
of qibla directions provides a wealth of questions for posing.  Note: the answers are right there in 
the table. 
 
 The timing of the unit is dependent on the material selected and the background of the 
students involved.  To cover the entire unit with an advanced class, a two week period is 
suggested. 
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Prerequisites:  Historically, spherical trigonometry was developed along with plane 
trigonometry. In these units it is assumed that students are already familiar with plane 
trigonometry and know the right triangle relationships and the Laws of Sines and Cosines. If a 
student is not familiar with spherical geometry, it is recommended that some background work 
be completed before beginning this unit. If the class (or student) works well independently, this 
would be an excellent topic to research on the internet. The teacher could have a willing student 
prepare a short presentation on spherical geometry. The topics investigated should include: how 
to measure the distance between two points (the arc of the great circle between them), angle 
measure, and the sum of the angles of a spherical triangle.  
 
Materials:  It is highly recommended that students have visual aids to help them see the 
relationships among sides and angles of spherical triangles and how they compare to plane 
triangles. Inexpensive plastic spheres can be purchased at local craft stores and marked with 
overhead pens.  The more elaborate Lenart Sphere is an excellent resource since it comes with a 
protractor for measuring spherical angles and lengths of great circles. Semispherical 
transparencies enable students to draw on the sphere and save their work. Transparencies can be 
stacked on one another to show further relationships. The Lenart Sphere and supplemental 
material, including an activities book, are available from Key Curriculum Press.                                    
 
 There are two pages of student exercises that can be duplicated: one on solving spherical 
right triangles and another on oblique triangles. A scientific calculator is required for 
computations. Answers are given at the end of each set of exercises.  
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Astronomer 
 
 

 
 
 

depicted in Das Stadebuch (The Book of Trades) 
A book of 114 woodcuts 

by Jost Amman (1539-1591) 
Frankfurt, Germany 1568 

with descriptions written by Hans Sachs, “the shoemaker 
poet” 

 
Source:  http://cccw.adh.bton.ac.uk/schoolofdesign/MA.COURSE/01/LIAAmman.html
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Historical Events in the Development of 
Spherical Trigonometry 

 
 The study of spherical trigonometry is closely related to the development of astronomy. 
Through trigonometry, one could determine the paths and positions of stars.  As man sought to 
accurately measure time, make calendars, navigate the oceans, and develop a more precise 
geography, the relationships between angles and sides of spherical triangles became of great 
importance. Problems of astronomy involved finding arcs of great circles on a sphere.  These 
arcs became sides of spherical triangles and, as theorems were developed, solutions were made 
possible by using the known parts of triangles that had been found by prior calculation or 
observation. 
 
 It is likely that spherical geometry was known by the school of Pythagoras (fifth 
century, BCE).  The earliest extant texts on the subject, particularly dealing with the relationship 
of spherical geometry to astronomy, are On the Moving Sphere, by Autolycus (c. 300 BCE) and, 
the Phaenomena, by Euclid (c. 300 BCE).   Hipparchus (~190 - 120 BCE) was probably the 
first person to study trigonometry extensively, both plane and spherical.  He developed tables of 
chords and knew how to use these to solve triangles.  Although Hipparchus and later 
mathematicians knew how to use plane trigonometry to solve triangles, they generally applied 
this knowledge to the heavens.  They did not use plane trigonometry in indirect measuring and 
surveying on the earth.  Heron (c. 100 CE) was interested in surveying and could have 
developed many theorems in plane trigonometry.  However he was content to apply Euclidian 
Geometry to most situations. Surveyors themselves were uneducated and would not have been 
able to develop the necessary theorems. 
 
 Menelaus wrote Sphaerica, a major treatise on spherical geometry and trigonometry,  
around 100 CE and proved for spherical triangles many of the same theorems that Euclid had 
shown true for plane triangles. He was the first to define a spherical triangle. Menelaus then 
proved that, in a spherical triangle, the sum of the measures of two sides is greater than the 
measure of the third side, that the  sum of the angles of a triangle is greater than two right angles, 
and that equal sides subtend equal angles.  He proved the various triangle congruence theorems, 
including one that is not valid in plane geometry, that if three pairs of corresponding angles are 
congruent, then the triangles are congruent (AAA).   He also proved numerous theorems in 
spherical trigonometry.   Menelaus’ most common proof method involved projecting a spherical 
diagram on the plane and then proving the result in the plane.  
 
 In dealing with spherical trigonometry, one must realize that both the angles of a 
spherical triangle and the sides are measured in degrees.  Thus not only can one consider the sine 
of an angle, but one can consider the sine of a side.  One can think of the sine of a side (or a 
spherical arc) as being equal to the sine of the corresponding central angle at the center of the 
sphere. 
 
 Perhaps the best known theorem in the Sphaerica is the one referred to as Menelaus' 
Theorem, from which many standard results of spherical trigonometry can be derived.  Suppose 
two arcs AB, AC are cut by two other arcs BE, CD which intersect at F.  With the arcs labeled as 
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in the figure, and with AB = m, AC = n, CD = s, and BE = r, then Menelaus theorem, which we 
write using sines rather than the chords used by Menelaus himself, states: 
 

2 2 2

1 1 1 1

sin( ) sin( ) sin( ) sin( ) sin( ) sin( )and
sin( ) sin( ) sin( ) sin( ) sin( ) sin( )

n s m n s
n s m n s

= ⋅ = ⋅ 2r
r

. 

            
 
 

 
 
 
 
 
 The Egyptian astronomer Claudius Ptolemy (c. 100-178 CE) elaborated on what 
Hipparchus and Menelaus had written.  He integrated trigonometry and astronomy and 
developed algorithms for solving spherical triangles.  His famous work, the Almagest,  had many 
examples of spherical trigonometry.  In particular, he developed formulas equivalent to the 
following, which enabled him to solve spherical right triangles:  Suppose a, b, c are sides of a 
spherical triangle, A, B, and C  the angles opposite, with C a right angle.   Then 
 
     sin a = sin c sin A 
     tan a = sin b tan A 
     cos c = cos a cos b 
     tan b = tan c cos A 
 
(Remember that sides of spherical triangles are measured in degrees and are arcs of great 
circles.) 
 
 Ptolemy applied these results to solve such problems as the length of daylight at a given 
location at a given time, the position of the Sun when it rose, and the distance of the Sun from its 
zenith at noon.  In addition, he developed mathematical models for the moon and the planets and 
used spherical trigonometry to help predict future positions of these bodies.  He did not, 
however, develop general rules for solving non-right spherical triangles. Whenever these 
occurred, he broke them up into right triangles by drawing appropriate perpendiculars. 
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In another work, the Planisphaerium, Ptolemy developed the concept of stereographic 
projection, a mapping by which points on a sphere are represented on the plane of its equator by 
projection from the south pole .  Under this mapping, angles between curves are preserved and 
circles are mapped onto circles (as long as the circle on the sphere does not go through the south 
pole). 
 
 Islamic mathematicians continued the work of Ptolemy in spherical trigonometry.  They 
needed this subject not only for astronomical investigations, but also for performing religious 
duties.  
 
 The relationships above for spherical right triangles were used in Islam, but Islamic 
astronomers also developed methods for dealing directly with non-right triangles.  For example, 
Abū l-Wafā (940-997), an astronomer of Baghdad, gave the “rule of Four Quantities” in his 
book Zig al–Majisti, a work based on Ptolemy’s Almagest.  This rule states that if ABC and ADE 
are two spherical triangles with right angles at B and D and a common acute angle A, then  
sin BC:sin CA = sin DE:sin EA.  Using this rule, Abu’l-Wafa also proved the law of sines for a 
general spherical triangle ABC: 
 

sin sin sin
sin sin sin

a b
A B

= =
c
C

 

 

 
 

 
 Other Islamic scholars also contributed to the development of spherical trigonometry.  
Al–Bīrūnī (973-1055) determined the qibla (the direction of Mecca relative to one's location) 
and al–Bāttānī (858-929) established the law of cosines for spherical triangles:  

 
cos a = cos b cos c + sin b sin c cos A. 

 
 Nasir al–Din al–Tusi (1201–1274) wrote the Treatise on Quadrilaterals, the first work 
which treated plane and spherical trigonometry separately from astronomy.  He developed an 
additional formula to solve spherical right triangles:  cos c = cot A cot B .  The book also 
contained rules for solving general spherical triangles.  In particular, al-Tusi showed how to 
solve a triangle when the three sides were known and how to solve one where the three angles 
were known.  His book was the first to contain a solution of this last problem. 
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The Islamic scholars mentioned so far all resided in the Middle East.  But it was a 
mathematician in Spain, Jabir ibn Aflah (also called Geber) (early twelfth century) whose 
works were central in the transmission of trigonometry to Europe.  Jabir added another formula 
to solve spherical right triangles, one useful when a side and its adjacent angle were known: 
cos B = cos b sin A . This statement is now referred to as Geber's Theorem. 
 
 Richard of Wallingford (1291–1336), an English monk, wrote one of the first 
trigonometry texts in western Europe, the Quadripartium, a treatise in four parts.  He later 
revised and shortened this work in a treatise entitled De sectore.  His goal was to explain how to 
solve problems in spherical trigonometry and therefore be able to apply them to astronomy.  The 
work was in reality a very detailed explanation of the theorems of Menelaus plus many of  the 
other theorems developed since Spherica.  In the second version of the text, Richard included 
some of the spherical trigonometry of Jabir. 
 
 One of the most important developments in the study of trigonometry occurred in the 
mid-fifteenth century when Regiomontanus (1436–1476) wrote De triangulis.  The work 
consisted of five books, two on plane trigonometry and three on spherical.  Regiomontanus 
compiled all the known properties of plane trigonometry, spherical geometry, and spherical 
trigonometry in an organized form. All the mathematics was done independently of astronomy. 
Various methods of proofs were used. Interestingly, some of the proofs of results in spherical 
trigonometry were apparently taken directly from the work of Jabir.  
 
 Unfortunately, Regiomontanus’ early death delayed the publication of his book until 
1533.  In the meantime,  Johann Werner (1468-1528)  improved on that book and published 
some of Regiomontanus’ ideas  in his own De Triangulis Sphericis of 1514.  Further 
improvements were made by George Joachim Rhaeticus  (1514-1576).  In particular, Rhaeticus 
used all six trigonometric functions, which helped to simplify many formulas. 
 
 In 1579, trigonometry theorems were further systematized and extended by François 
Viète in his Canon Mathematicus.  He gave a complete set of formulas to calculate any one part 
of a right spherical triangle in terms of two other known parts. Viete also wrote the rule for 
remembering this collection of formulas, the rule now called Napier’s rule (a full description is 
given below). 
 
 Though many others wrote of trigonometric relationships, a brief mention must be given 
to Albert Girard (1595–1632) who was the first to use the abbreviations sin, tan, sec. He also 
expressed the area of a spherical triangle in terms of its spherical excess, the difference between 
the angle sum and 180°. 
 
 John Napier (1550–1617) also wrote extensively on spherical trigonometry. His 
analogies (“analogy” referring to proportion) were useful in solving oblique spherical triangles.  
It is his rule of circular parts that is often used to remember the formulas used in solving right 
spherical triangles: 
Arrange the sides and angles of a right triangle in order around a circle. 
The bar above letters indicates the complement.  Note that C is the right angle 
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Then the sine of any middle part is equal to the product of the cosines of the two opposite parts. 
Also, the sine of any middle part is equal to the product of the tangents of the two adjacent parts. 
 
For example, sin a = sin A · sin c and cos A = sin B · cos a.  
 
 
Teacher note: A list of theorems is in another section of this module. 

Have students verify that all ten theorems can be generated by the two rules given 
above, and determine if there are any relationships resulting from the rules that 
are not in the list.    
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Theorems in Spherical Trigonometry 
Teacher Notes 

 
In spherical trigonometry, as in the plane, the three chief aims are brevity,  clarity, 
and simplicity; a chapter on the Earth treated as a sphere being given to enliven an 
otherwise formal and lifeless subject. 

    Leonard M. Passano, Plane and Spherical Trigonometry 
    (a textbook from 1918) 
  
 Many formulas in spherical trigonometry are similar to those in plane trigonometry.  
From the first set of exercises in this unit, it is important to remember that the sides of the 
triangles are arcs of great circles and thus measured in degrees.  The sum of the angles is not 
limited to 180º, but may total as much as 540º.   
 
 The next page contains a listing of some of the theorems of spherical trigonometry. Class 
discussion could involve stating either the Law of Sines or Cosines in words and asking the 
students to write the formulas.  Following the list are several proofs written as exercises for the  
student (perhaps with teacher led discussion).  
 
 1.  Basic Theorems of Right Triangles  
      (including Napier's Rule and Student Exercises on Solving Spherical Right  Triangles)  

2. Law of Sines  
3. Law of Cosines  (including Student Exercises on Solving Oblique Triangles, 

 Ambiguous Cases) 
 
 
  Hopefully the student will not find these "formal and lifeless."  Any of the other 
theorems would be good challenges for the advanced student.   It is important to stress that the 
triangles in these proofs must meet the  following conditions: 
 
 1. Each angle is less than two right angles; each side is less than the 
       semicircumference of a great circle (each element must be < 180º). 
 2.  Any side of the spherical triangle is less than the sum of the other two sides. 
 3.  The sum of the sides must be < 360º. 
 4.  The sum of the angles must be between 180º and 540º. 
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Spherical Triangle Formulas 
 

Right triangles (with right angle C): 
 
 

           

sin A = sina
sin c

sin A = cos B
cosb

cos A =
tanb
tanc

tan A =
tan a
sinb

cosc = cos acosb                   

sin B = sinb
sinc

sin B = cos A
cosa

cos B =
tana
tanc

tan B =
tanb
sin a

cos  c = cot Acot B
 
 
Oblique Triangles: 
 
 Law of Sines: In any spherical triangle, the sines of the sides are proportional to the sines 
of their opposite angles: 
 
 

sina
sin A

=
sinb
sin B

=
sinc
sin C             

 
 Law of Cosines:  The cosine of any side is equal to the product of the cosines of the other 
two sides plus the product of their sines and the cosine of their included angle: 
 

cos a = cosb cosc + sinbsin c cos A
cosb = cosc cosa + sinc sina cos B
cosc = cos acosb + sina sinbcos C  

 
 Similar results are true for the cosine of any angle: 
 

cos A = −cos B cosC + sin Bsin Ccos a 
cos cos cos sin sin cosB C A C A= − + b

c
 

cos cos cos sin sin cosC A B A B= − +  
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Half Angle Formulas: 
 
 

sin( )sin( ) cos cos( )sin sin
2 sin sin 2 sin sin
A s b s c a S S

b c B C
− − − −

= =
A  

 

   sin sin( ) cos( ) cos( )cos cos
2 sin sin 2 sin sin
A s s a a S B S

b c B C
− −

= =
C−  

 
sin( )sin( ) cos cos( )tan tan

2 sin sin( ) 2 cos( )cos( )
A s b s c a S S A

s s a S B S C
− − − −

= =
− − −

 

 
In these formulas, s is half the sum of the sides of the triangle, while S is half the sum of the 
angles.  Naturally, there are analogous formulas for the sine, cosine, and tangent of half of the 
other two angles or half of the other two sides. 
 
 
Napier’s Analogies: 
 

                            

sin
1
2

A + B( )

sin
1
2

A − B( )
=

tan
1
2

c

tan
1
2

a − b( )

cos 1
2

A + B( )

cos 1
2

A − B( )
=

tan 1
2

c

tan 1
2

a + b( )
                              

sin
1
2

a + b( )

sin
1
2

a − b( )
=

cot
1
2

C

tan
1
2

A − B( )

cos 1
2

a + b( )

cos 1
2

a − b( )
=

cot 1
2

C

tan 1
2

A + B( )
 

 
      
Delambre’s Analogies: 
 

                      

sin 1
2

A + B( ) =
cos

1
2

a − b( )

cos
1
2

c
cos C

2

sin
1
2

A − B( ) =
sin 1

2
a − b( )

sin 1
2

c
cos

C
2

              

cos 1
2

A + B( ) =
cos

1
2

a + b( )

cos
1
2

c
sin C

2

cos
1
2

A − B( ) =
sin 1

2
a + b( )

sin 1
2

c
sin

C
2
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Proof of Right Spherical Triangle Relationships 
 
Teacher Note: The teacher during class discussion could present the following proof.  The 
teacher may stop at any point in the discussion and ask students to make as many conclusions as 
they can.  The ten conclusions listed may be written in equivalent forms; the ones listed are the 
most common found in texts.  A page with only the two diagrams is given so that a transparency 
can be made for use in the classroom or for copying convenience. 
 
 
Let C be the right angle of spherical triangle ABC and O be the center of the sphere: 

B

O

A

C

a

b

c

 
 
                                   
 
Draw radii OA, OB, and OC.  At any point A' on OA , draw segments A'B' and A'C' in planes 
OAB and OAC respectively such that they are perpendicular to OA, meeting OB and OC at B' and 
C' respectively.   
 
Draw B'C'. 

                                        

B

O

A

C

a

b

c

B’

A’

C’

Note:  OA is perpendicular to plane A'B'C', while planes A'B'C' and OBC are perpendicular to 
plane OAC.  Therefore, B'C' is perpendicular to plane OAC, so B'C' is perpendicular to A'C' and 
OC'. 
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Diagrams for Spherical Right Triangle Proofs 
 
 
 
 
 

B

O

A

C

a

b

c

 
 
 
 
 
 
 

B

O

A

C

a

b

c

B’

A’

C’
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Sides a, b, and c measure angles BOC, COA, and AOB respectively, and angle A of spherical 
triangle ABC is equal to angle B'A'C'. 
 
In right triangle OA'B':   
 

' 'cos cos ' '
' '

OA OC OAc A OB
OB OB OC

= = = ⋅
'
'
’ 

 
However, in right triangles OB'C' and OC'A' 

 
' 'cos and cos
' '

OC OAa b
OB OC

= = . 

 
It follows that . cos cos cosc a= b
 

We also have                  ' ' ' '/ ' sinsin sin ' ' '
' ' ' '/ ' sin

B C B C OB aA B A C
A B A B OB c

= = = =       and 

 
' ' ' '/ ' tancos cos ' ' '
' ' ' '/ ' tan

A C A C OA bA B A C
A B A B OA c

= = = = . 

  
   

Similarly, we get sin tansin and cos
sin tan

b aB B
c c

= = . 

 
We get the result for tan A by some manipulation, using the definitions and results already 
proved: 
 

sin sin tan sin sin tantan
cos sin tan cos tan cos cos tan sin

A a c a aA
A c b c b a b b

= = ⋅ = = =
a
b

. 

 
 

Similarly, we get      tantan
sin

bB
a

= . 

 
    
The second result for sin A also comes from algebraic and trigonometric manipulations: 
 

sin cos tan tan / tan cossin
sin cos tan cos / cos cos

a a a a cA
c c c c a

= = = =
B
b

. 

 
 

Similarly,     cossin
cos

AB
a

= . 
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The final formula in our list also comes from some manipulation: 
 

cos coscos cos cos cot cot
sin sin

A Bc a b A
B A

= = ⋅ = B . 

   
 
In our proof, we make the assumption that angles A and B are acute. However, a similar proof 
works if one or the other is obtuse. 
 
 
 
Textbooks in the early 1900's usually had an entire chapter devoted to spherical trigonometry. 
Just as students today are expected to memorize the right triangle relationships for plane 
triangles, students at the turn of the century had to learn all the theorems related to spherical 
triangles.  Looking at the ten theorems just proven, it would seem difficult to keep them straight.  
Many students use the letter combination sohcahtoa to remember the right triangle definitions.  
In the late 1500's, John Napier gave the following rule for the ten spherical theorems:  the sine of 
the middle part equals the product of the tangents of the two adjacent parts or the sine of a 
middle part equals the product of the cosines of opposite parts, where the “parts” are as in the 
diagram. Do not consider the right angle C;  the “parts” a and b are sides of the triangle, while 
the other three “parts” are the complements of angle A, side c, and angle B.  As an example of 
using the rule, we calculate the sine of a.  The adjacent parts to a are b and comp B, while the 
opposite parts are comp A and comp c.  The rule then says that sin a = tan b tan (comp B) 
 = tan b cot B.  This is equivalent to the formula tan B = tan b / sin a.  Similarly, we have sin a = 
cos(comp A) cos(comp c) = sin A sin c, and this formula is equivalent to sin A = sin a / sin c. 

comp c

C

comp B

comp A

b

a

 
 
Can you generate all ten theorems using Napier's Rule? 
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Spherical Trigonometry 
Student Pages 

 
Exercises on Right Triangles 
 
1.  Given B = 33º50', a = 108º.  Find A, b, c. 

 
Note that, in general, it is preferable at each step to use the given values rather than any 
computed values.  You can check your answer by using an identity not already used in 
the solution. You should also note that, as in plane triangle, the largest side is always 
opposite the largest angle and the smallest side is opposite the smallest angle.  

  
 
 
 
      
2.  Given c = 70º30',  A = 100º.  Find a, b, and B. 
   
 
 
      
 
3.  Given A = 105º59',  a = 128º33'.  Find b, B, and c.     Note that in this case there are two  

possible solutions. 
 
 
 
 
 
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –   
 
Answers: 
 
1.    b = 32º31',  A = 99º54',  c = 105º6'    

You can check this result with the identity cos A = tan b / tan c. 
  
2.    a = 111º50', b = 153º53', B = 152º9' 
 Do not forget to check with an identity involving a, b, and B. 
 
3.     The two solutions are b = 21º4',  c = 125º34',  B = 26º13'  and 
         b = 158º56',  c = 54º26',  B = 153º47'. 

Note that since a > 90º,  the equation cos c = cos a cos b shows that when b > 90º,  we have 
c < 90º and conversely.  Similarly, since A > 90º, the equation cos c = cot A cot B shows that 
when B > 90º, we have c < 90º and conversely.  
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Proof of Law of Sines for Spherical Triangles 
 
Around 1000 CE, Abū l-Wafā, an Islamic mathematician, demonstrated the Law of  Sines for 
spherical triangles: 

sina
sinA =

sinb
sinB =

sinc
sinC

      
    

 
 
 
Given spherical triangle ABC, draw arc CD perpendicular to arc AB.  Extend BA and BC to BH 
and BT respectively, where each of the latter arcs are quadrants (equal to 90º).  Similarly, extend 
AB and AC to AE and AZ respectively, where both of these latter arcs are quadrants.  Therefore A 
is a pole for great circle EZ and B is a pole for great circle TH.  (This means that A is 90º away 
from the great circle EZ and similarly for B with respect to TH. That implies that EZ is 
perpendicular to both AE and AZ, while TH is perpendicular to both BH and BT.  Look at a globe 
to confirm this fact.) 
 
Consider right triangles ADC and AEZ.  In the first, we know that sin A = sin DC/ sin b.  In the  
second, we know that sin A = sin ZE / sin ZA.  It follows that  
 

sin sin
sin sin

DC ZE
b Z

=
A

a

. 

 
Similarly, using right triangles BDC and BHT, we get:   
 

sinDC
sina

=
sinTH
sinTB

 
But arc ZE = ∠A    and arc TH = ∠B, because of the nature of poles.  Also, since ZA and TB are 
equal to 90º, their sines are equal to 1.  It follows that 
   

sin sin sin and sin sin sinDC b A DC a B= = . 
 Therefore, sin  and we have one part of the law of sines.  The rest follows by 
dropping a perpendicular from A onto BC and repeating the argument. 

sin sin sinA b B=
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Proof of Law of Cosines for Spherical Triangles 
 

B

O

A

C

a

b

c

B’

A’

C’

 
ABC is a spherical triangle with center of sphere O, sides b and c < 90º.  Through any point A' on 
OA pass a plane perpendicular to OA cutting planes OAC, OAB, OBC in A'C', A'B', and B'C',  
respectively.  Then ∠B'A'C' is the measure of spherical angle A and ∠OA'B' and ∠OA'C' are 
right angles. 
 
We now use the law of cosines from plane trigonometry: 
 
In triangle A'B'C': . 2 2 2' ' ' ' ' ' 2 ' ' ' 'cosB C B A C A B A C A A= + − ⋅
In triangle B'OC':  2 2 2' ' ' ' 2 ' ' cosB C B O C O B O C O a= + − ⋅
Thus  2 2 2 2' ' 2 ' ' cos ' ' ' ' 2 ' ' ' 'cosB O C O B O C O a B A C A B A C A A+ − ⋅ = + − ⋅
Therefore, . 2 2 2 22 ' ' cos ' ' ' ' ' ' 2 ' ' ' 'cosB O C O a B O B A C O C A B A C A A⋅ = − + − + ⋅
    
Since B'OA'  and  C'OA'  are right triangles, . 2 2 2 2 2' ' ' ' and ' ' ' 'B O B A OA C O C A OA− = − = 2

=

 
Therefore, by substituting and dividing by 2, we get 
 

2' ' cos ' ' ' ' 'cosB O C O a OA B A C A A⋅ = + ⋅  
 
We now divide both sides by .   ' 'B O C O⋅
Since  and  C A , we get '/ ' cos , '/ ' cos , ' '/ ' sin ,OA C O b OA B O c B A B O c= = ' '/ ' sinC O b=
 

cos a  =  cos b · cos c  +  sin b · sin c · cos A 
 
By interchanging the various arcs and angles, we get two other forms of the law of cosines: 
 

cos b  =  cos c · cos a  +  sin c · sin a · cos B 
cos c  =  cos a · cos b  +  sin a · sin b · cos C 

 
These relationships may be verbalized:  the cosine of any side is equal to the product of the 
cosines of the other two sides plus the product of their sines and the cosine of their included 
angle. 

 168 



Exercises on Oblique Triangles 
 
1.  Justify the following statements concerning the existence of a spherical triangle with 
     the given information: 
 
 a.  Given a side and the two adjacent angles, a triangle is always possible. 
 b.  Given two sides and the included angle, a triangle is always possible. 
 c.  Given three sides, a triangle is possible provided no side is greater than the sum 
      of the other two and the sum of the sides < 360°. 
 d.  Given three angles, their sum must be between 180° and 540° and B + C–  A,   
      C + A – B,  and  A + B – C must be between  –180° and 180°. 
 e.  Given two sides and an angle opposite one of them, there could be 0, 1, or 2 
      solutions. 
 f.  Given two angles and a side opposite one of them there could be 0, 1, or 2 
      solutions. 
  
2.  Given  a = 58°,  b = 116°,   B = 94°50'.    Find A, C, and c.  How many possible solutions are 
there?  Hint:  You will need to use one of Napier’s analogies, as well as the Law of Sines. 
 
3.  Given a = 62º,  b = 126º,  c = 70º.  Find A, B, and C. 
 
4.   We can use spherical trigonometry to find the distances between two cities on the earth’s 

surface.  Suppose that the latitude and longitude of the first city are  λ and θ, respectively, and 
that the latitude and longitude of the second city are µ and φ, respectively.  Then the spherical 
triangle whose vertices are the north pole and the two cities will have sides a = 90˚ – λ and b 
= 90˚ – µ.  The included angle C  will be equal to φ – θ.  (To verify this, it is handy to look at 
a globe and draw in the spherical triangle.  Note that it may be convenient to represent west 
longitude with a plus and east longitude with a minus.)  The distance between the two cities 
(in degrees) is then the length of the side c connecting them.  You can find this value by using 
the spherical law of cosines.  To determine the distance in miles, we need to convert degrees 
to miles using the fact that the circumference of the earth, which is equal to 360˚, is also equal 
to 25,000 miles. (Note that depending on the relative positions of the two cities,  the 
instructions here may need to be modified slightly.) 
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a.  New York has latitude 41˚ N, longitude 74˚ W.  London has latitude 52˚ N, longitude 
0˚.  Find the great circle distance between them in degrees and then convert to miles.    

 
b.  Find the great circle distance between London (whose coordinates are given in a) and 

Tokyo, whose latitude is 36˚ N and whose longitude is 140˚ E. 
 
c.  Select two cities on different continents and find the distance between them.  Compare  

your answer with the  mileage given in an atlas.   
 
5.  In the practice of their religion, Muslims need to know the direction to their holy city, 
     Mecca, from their current location. As mentioned in the historical notes, al–Bīrūnī 
     first determined a method for finding this direction, which is called the qibla. He felt  
     his pursuit of a correct procedure would reward him in this world as well as the 
     hereafter.  To determine the direction to Mecca from a particular city, we need to solve a            

spherical triangle, the three vertices of which are the particular city, the North Pole, and 
Mecca.  If the side from the city to the north pole is designated by a, the side from the north 
pole to Mecca by b, then the desired angle is angle B.  Note that since we assume known the 
latitude and longitude of the particular city as well as that of Mecca (latitude 21˚ N, longitude 
40˚ E) in this triangle we know a, b, and C.  To find B, we need first to find c from the law of 
cosines and then use the law of sines. 

 
 
 

 
a.    Show that to face Mecca, a person in San Francisco (latitude 38˚ N, longitude 122˚W) 

needs to turn approximately 19° east of true north.   
 
     b.    The table on the next page shows additional qibla values.  Confirm the value for New 

York and for one other city of your choice. 
 
: 
  
 
 
 
 

 170 



 
 
 
 
Chart by Dr. Mohibullah N. Durrani, National Coordinator for Astronomical Information, 
Islamic Society of North America (ISNA) 
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Answers to Student Exercises on Oblique Triangles 
 
2.  Using the Law of Sines, A = 70°5' or 109°55'.  But since a < b, we must also have A < B. 

Therefore, only one value of A is correct, namely A = 70°5'.  To find c, we use one of 
Napier’s analogies.  To do that, we first calculate ½(A + B), ½(B – A), and ½(b – a).  We 
then find that c = 137º25'.  It is easiest to find C by another application of the law of sines.  
Again, this gives us two values, but we must pick the larger one, C = 131º24'.  In this case, 
there is one solution to the triangle. 

 
3.  Use the law of cosines to determine cos A.  We get that A = 28º7'.  The remaining angles can 

be found by using either the law of sines or the law of cosines.  The solutions are B = 154º25' 
and C = 30º6'.  Whichever law you use to calculate the answer, it is wise to check using the 
other one. 

 
4.a.The spherical triangle in this case has side a = 49º, side b = 38º, and angle C = 74º.  We use 

the law of cosines to calculate c = 49.83º.  The distance in miles is determined by multiplying 
this value by 25,000 and then dividing by 360.  The answer is approximately 3460 miles. 

 
   b. In this case, c = 85.32º, and the actual distance is about 5925 miles. 
 
5.a. The spherical triangle in this case has a = 52º, b = 69º, and C = 162º.  From the law of 

cosines, we find that c = 118.62º.  An application of the law of sines then gives B = 19.2º.  
(This differs slightly from the value in the table, because we have rounded off the latitude 
and longitude of our cities to whole degrees.) 
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Biographies 
 

 Since many of the units in this module reference the same mathematicians, biographies 
have been consolidated in a separate section.  Most of these biographies contain quotations that 
can enrich classroom discussions and lead to further investigations. 
 
 An excellent web site for information on the lives of mathematicians (both the famous 
and the obscure) is The Mactutor History of Mathematics Archive.  The address for this site is: 
http://www-history.mcs.st-and.ac.uk/history/.  Accessed June 27, 2001 
 
 Biographies contained in this unit include: 
 
 
  Muhammad Abū’l’Wafā al-Būzjānī 
 
  Abu ‘Abdallāh Muhammad ibn Jābir al-Bāttānī 
 
  Abu l-Rāyham Muhammad ibn Ahmaad al-Bīrūnī 
 
  Brahmagupta 
 
  Abraham de Moivre 
 
  Hipparchus of Rhodes (also of Bithynia and Nicaea) 
 
  Claudius Ptolemy 
 
  Johann Muller Regiomontanus 
 
  Thales of Miletus 
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Muhammad Abū’l-Wafā al-Būzjānī 
 
 
 

Born:  June 10, 940 in Buzjan, Khorasan region (now in Iran) 
Died:  July 15, 998 in Baghdad (now in Iraq) 
 
 
  
 Abū’l-Wafā is often referred to as the greatest Arab mathematician of the tenth century.  
His primary occupation was as an astronomer at the observatory at Sharaf al Daula.  He also 
translated and wrote commentaries on the works of Euclid, Diophantus, and al-Khwarizmi.  
Unfortunately these writings have been lost.  His interest in astronomy led him to prove theorems 
in both plane and spherical trigonometry.  Like al-Biruni, Abū’l-Wafā introduced the secant and 
cosecant and studied the relationships among the six trigonometric functions and how they were 
associated with arcs on the unit circle.  It should be noted that he focused on arcs of the unit 
circle rather than angles. 
 
 Abū’l-Wafā also devised a new method of calculating sine tables using the tangent 
function.  His tables, with entries given at 15’ intervals, were accurate to eight decimal places 
while Ptolemy’s were only accurate to five.  In doing this, he developed the double and half 
angle formulas.  Abū’l-Wafā was one of the first mathematicians to prove the Law of Sines for 
spherical triangles. 
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Abu ‘Abdallāh Muhammad ibn Jābir al-Bāttānī 
(also known as Albategnius) 

 
 
Born:  about 860 in Haran (near Urfa), Syria 
Died:  929 in Samarra, Iraq 
 
 
 
 As with many mathematicians of his time, al-Bāttānī primarily focused on the study of 
the stars and cataloged 533 of them.  He was also able to give a more precise value of the length 
of a year (365 days, 5 hours, 48 minutes, 24 seconds).   One of Al-Bāttānī’s goals was to 
improve on the Almagest.   Many of his conclusions were similar or even more precise than those 
of Ptolemy.  The main difference was that al-Bāttānī relied on trigonometric calculations rather 
than the geometrical models of Ptolemy.  For some of his computations he used the sine of the 
complement of 90° (our current cosine).  However this presented difficulties when the angle was 
between 90° and 180° since he did not take the sine of a negative number.  Thus al-Bāttānī 
resorted to a versine function such that versine α = R + Rsine(α – 90°).   
 
 

 175 



Abu l-Rāyhan Muhammad ibn Ahmad al-Bīrūnī 
  
 
Born:  September 15, 973 in Kath, Khwarazm (now Kara-Kalpakskaya, Uzbekistan) 
Died:   December 13, 1048 in Ghazna (now Ghazni, Afghanistan) 
 
Quotations: 
 
 Once a sage asked why scholars always flock to the doors of the rich, whilst the rich are 
not inclined to call at the doors of scholars.  “The scholars” he answered, “are well aware of the 
use of money, but the rich are ignorant of the nobility of science.’’    
 Quoted in A. L. Mackay, Dictionary of Scientific Quotations  (London 1994) 
 
 You well know...for which reason I began searching for a number of demonstrations 
proving a statement due to the ancient Greeks...and which passion I felt for the subject...so that 
you reproached me my preoccupation with these chapters of geometry, not knowing the true 
essence of these subjects, which consists precisely in going in each matter beyond what is 
necessary...Whatever way he [the geometer] may go, through exercise will he be lifted from the 
physical to the divine teachings, which are little accessible because of the difficulty to 
understand their meaning...and because the circumstance that not everybody is able to have a 
conception of them, especially not the one who turns away from the art of demonstration. 
     Book on Finding the Chords in the Circle 
 
 
 
 Al-Bīrūnī was a noted writer on a wide variety of topics including Indian life, language, 
religion and culture, as well as astronomy, mathematics, physics, and medicine.   
 
 His work on shadows and chords of circles were published in his Exhaustive Treatise on 
Shadows  in which he described the relationships among all six trigonometry functions and 
showed the relation of them to those in the unit circle. Al-Bīrūnī also developed the Pythagorean 
identities such as co .  He also worked on a table of sines with step 15´ accurate 
to four sexagesimal places.  The tables were only used for astronomical computations; similar 
triangles were applied to more earthly endeavors. 

2t 1 cscα + = 2 α

 
 Especially important were his scientific investigations. Al-Bīrūnī was convinced that the 
Earth rotated on its axis. He made precise calculations of latitude and longitude and also wrote 
accurate observations of both a solar eclipse (April 8, 1019) and a lunar eclipse (September 17, 
1019).  He also wrote about calendars and collected observations of equinoxes.  In addition, Al-
Bīrūnī studied the specific weight of precious stones and metals and the properties of springs. 
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Brahmagupta 
 
 

Born:  598 in Ujjain, India (place of birth not confirmed) 
Died:  670 in India 
 
Quotation:  “As the sun eclipses the stars by its brilliancy, so the man of knowledge will eclipse 
the fame of others in assemblies of the people if he proposed algebraic problems, and still more 
if he solves them.” 
    Quoted in F. Cajori, A History of Mathematics 
 
 
 Like many of his time, much of Brahmagupta’s writings focused on astronomy and dealt 
with solar and lunar eclipses, positions of the planets, and the length of the year. He wrote his 
major work Brahmasphutasiddhanta (Correct Astronomical System of Brahma) when he was 
only thirty years old.  Interestingly, the work, which dealt with the solution of astronomical 
problems, was written in verse.  He was also head of the astronomical observatory at Ujjain.  
However, our focus is on Brahmagupta’s mathematical contributions. 
 
 In developing his mathematical formulas, he used new algebraic notations that eased 
computations and clarified his work.  Many high school students are familiar with his formulas 
dealing with cyclic quadrilaterals: 
 

 Area = ))()()( dscsbss −−−( a−   where s is the semiperimeter and a, b, c, d  
  are the four sides of the quadrilateral. 
 
  The product of the diagonals = sum of the product of opposite sides 
 
 Indian sine tables were computed for arcs 3¾° apart. Brahmagupta developed 
interpolation techniques to find other sine values.  One used second order differences and 
another an algebraic formula (perhaps originated by his contemporary Bhaskara). His 
conclusions were not stated a formal proofs, but as algorithms for solving the problem in 
question. 
 
 Brahmagupta also studied arithmetic progressions, quadratic equations, and systems of 
linear congruences, and discovered theorems about right triangles and the surfaces and volumes 
of certain shapes.  He was the first Hindu mathematician to state the rules for adding, 
subtracting, multiplying, and dividing positive and negative numbers.  However he did make 
mistakes, believing, as many students do, that  0 ÷ 0 = 0.   [He did correctly state that 0 · 0 = 0.]  
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Abraham de Moivre 
 
 
 
Born:  May 26, 1667 in Vitry (near Paris), France 
Died:  November 27, 1754 in London, England 
 
 
  
 Abraham De Moivre was born in Vitry, in the French champagne country east of Paris.  
He was educated in the classics and mathematics, but in 1685 his life was drastically changed. 
The Edict of Nantes had been a legal bulwark of religious tolerance, but, when it was revoked in 
1685, De Moivre, a Protestant, was sent to prison for a little over two years. In 1688, when he 
was freed, he departed for England where he settled. De Moivre continued to study mathematics 
and went on to a career of tutoring, solving mathematics problems for others, and doing his own 
research. 
 
 De Moivre's largest and most important work was the Doctrine of Chances, which first 
appeared in 1718 and went through several later editions.  He also published the Miscellanea 
analytica (1730) which contained additional work on probability as well as the solution of 
polynomial equations. Though widely recognized for his mathematical achievements, even to the 
point of being elected a member of the Royal Society in 1697 and later to learned academies in 
Paris and Berlin, De Moivre was never able to obtain a university position. This may have been 
due to his being neither English nor Anglican. 
 
 Most high school students know of De Moivre when they study the theorem dealing with 
powers and roots of complex numbers in trigonometry. Though he never stated the relationship 
explicitly, there are indications he was familiar with "his" theorem as early as 1707. He was 
better known among his contemporaries for his work on probability theory and the development 
of analytic geometry. 
 
 De Moivre lived a long and productive life, but he died lonely and poor. Once he noticed 
that he was sleeping fifteen minutes longer each night and concluded that an arithmetic sequence 
existed and that he would die on the day he slept around the clock. De Moivre actually did die 
when he first slept round the clock, thus accurately predicting his death. Only a few close friends 
gathered to mourn the passing of this great mathematician. 
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Hipparchus of Rhodes 
(also called Hipparchus of Bithynia or Nicaea) 

 
Born:  c. 190 B.C.E. in Nicaea, Bithynia (now Iznik, Turkey) 
Died:   c. 120 B.C.E.  probably in Rhodes, Greece 
 
 
 
 Little is known of the life of Hipparchus and only one of his works has survived, a minor 
book entitled Commentary on Aratus and Eudoxus.  Our knowledge of his mathematical 
investigations come from references made by later scientists and mathematicians referring to 
Hipparchus.  Much of his investigations were celestial in nature.  It is believed that he cataloged 
over 800 stars using various ways to determine their positions. 
 
 Hipparchus introduced into Greece the division of a circle into 360° and was one of the 
first to make use of the sexagesimal division of degrees into minutes and seconds.  Hipparchus 
was also believed to be the first to form a table of chords that would enable right triangles to be 
easily solved.  Thus many refer to him as the Father of Trigonometry.  It was known that in a 
given circle the ratio of arc to chord decreased as the angle decreased from 180° to 0° 
(approaching a limit of 1).  It appears that he organized these ratios in table form.  Though many 
believe that Ptolemy relied heavily on the work of Hipparchus in writing his own tables, there is 
no clear cut proof. 
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Claudius Ptolemy 
 
Born:  about 85 in Egypt 
Died:  about 165 in Alexandria, Egypt 
 
Quotation:  “When I trace at my pleasure the windings to and fro of the heavenly bodies, I no 
longer touch the earth with my feet:  I stand in the presence of Zeus himself and take  my fill of 
ambrosia, food of the gods.” 
  Quoted in C. B. Boyer, A History of Mathematics  (New York 1968) 
 
 We know very little of Ptolemy’s life,  except that he lived in or near Alexandria, in 
Egypt. His title for his most important work is The Mathematical Compilation, but today it is 
generally known by the name given to it by Islamic astronomers:  the Almagest, which means the 
Greatest. A treatise in thirteen books, it gives in detail the mathematical theory of the motions of 
the Sun, Moon, and planets.   In the book, Ptolemy writes of the Earth being the center of the 
universe, a theory believed until the sixteenth century when Copernicus determined that the 
Earth and planets revolved about the Sun.  Though Ptolemy was proven wrong, it is important to 
note that his work did treat astronomy as a science and was the most influential astronomical 
work for almost fifteen hundred years. 
 
 Mathematically what is important is that Ptolemy used geometric models to predict the 
movements of celestial bodies and then provided the theorems necessary to prove his 
conclusions. The formulas he devised for his chord function are equivalent to our angle addition 
formulas for sine and cosine.  His table of the chord function at intervals of 1/2 a degree is 
equivalent to our sine table.  In calculating his table,  he found an approximation of √3 accurate 
to five decimal places (1.73205).  He also has a very good approximation to π as 377/120  
(3.141667).   
  
 Ptolemy’s work was so influential, that even Copernicus, in replacing Ptolemy’s earth-
centered universe by a sun-centered one, followed the model of Almagest very closely. 
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Johann Muller Regiomontanus 
 

 
Born:  June 6, 1436 in Kőnigsberg, Archbishopric of Mainz  (now Germany) 
Died:   July 8, 1476 in Rome, Italy 
 
 
Quotation:  You, who wish to study great and wonderful things, who wonder about the 
movement of the stars, must read these theorems about triangles.  Knowing these ideas will open 
the door to all of astronomy and to certain geometric problems. 
      De Triangulis Omnimodis 
 
 
 
 Born Johann Műller of Kőnigsberg, Regiomontanus preferred the Latin version of his 
name (Kőnigsberg meaning King’s mountain).  He is considered by many to be the most 
influential mathematician of the fifteenth century.   
 
 After travels to Italy, where he became proficient in Greek, Regiomontanus returned to 
Germany and sat up a printing press and observatory.  He hoped to print translations of the work 
of Greek mathematicians and scientists such as Archimedes, Heron, and Ptolemy.  He was 
invited to Rome by Pope Sixtus IV to help with calendar revision and died before the could 
translate and publish the books.  Some think he died of the plague; other believe he was poisoned 
by enemies. 
 
 As did many other mathematicians of his time, Regiomontanus focused much of his work 
on astronomy.  He observed eclipses of the moon, traced the path of Halley’s comet, and used 
lunar distances to determine longitude at sea.  Though his methods were good, instruments at the 
time could not give lunar positions with enough degree of accuracy for use at sea.   
 
 Of most importance to our study of trigonometry is his work De Tringulis Omnimodis 
(On triangles of Every Kind).  Published in 1464, it was a systematic account of methods for 
solving triangles.  Each theorem was proven and most had diagrams and examples, including, for 
example, the Law of Sines for both plane and spherical triangles..  Previously trigonometry was 
used mainly to solve astronomical problems.  Thanks to Regiomontanus, trigonometry became a 
separate discipline.   
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Thales of Miletus 
 
 
Born:  about 624 B.C.E. in Miletus, Asia Minor (now Turkey) 
Died:  about 547 B.C.E. in Miletus, Asia Minor (now Turkey) 
 
Quotation: “I will be sufficiently rewarded if when telling it to others you will not claim the 
discovery as your own, but will say it was mine.” 
    Quoted in H. Eves In Mathematical Circles  (Boston 1969) 
 
 Though his occupation was that of engineer, Thales is often considered the first Greek 
philosopher and is known as one of the “Seven Wise Men” of Greece.  Unfortunately, none of 
his work has survived so it is difficult to determine precisely the extent of his discoveries or his 
involvement in mathematical developments.  Proclus who lived around 485 C.E. did write that 
Thales introduced the study of geometry into Greece. However this does not imply that he used 
deductive proofs as Euclid did in The Elements.  Thales is often credited with five theorems of 
elementary geometry: 
  1.  A circle is bisected by any diameter. 
  2.  The base angles of an isosceles triangle are equal. 
  3.  The angles between two intersecting straight lines are equal 
  4.  Two triangles are congruent if they have two angles and one side equal. 
  5.  An angle in a semicircle is a right angle. 
Note that these statements are written using contemporary terminology.   
 
 Proclus also wrote that “his method of attacking problems had greater generality in some 
cases and was more in the nature of simple inspection and observation in other cases.”  The latter 
may apply to his observations of shadows and the heights of pyramids and similar objects.  He 
found that unknown heights could be found by measuring the shadow of the object at the time 
when some other item and its shadow were equal in length. 
 
 Thales believed that all things come to be from water and explained many phenomena 
such as earthquakes as a result of the Earth floating on an infinite ocean.  He is also credited with 
defining the constellation Ursa Minor. 
 
 Plato tells a story of how Thales was walking outside one starry night and fell in a ditch 
because he was so engrossed in heavenly observation.  A servant girl helped him out of the ditch 
admonishing him “how do you expect to understand what is going on up in the sky if you do not 
even see what is at your feet.”  Thus, as Brumbaugh says, perhaps this is the first absent-minded 
professor joke. 
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History of Trigonometric Terms 
 
 

This reference section describes the origins of the main vocabulary of trigonometry.  It is 
organized by order of these topics:  

the word trigonometry itself, 
angle measures,  
the 6 trigonometric functions, 
and the inverse trigonometric functions. 

 
Trigonometry 

 
 The term “trigonometry” first appeared in the title of a book in 1595 in Frankfort, 
Germany.  Bartholomaus Pitiscus (1561-1613) published Trigonometriae sive de dimensione 
triangulorum libri quinque, the first text on trigonometry.  The title is Latin for “On 
trigonometry, or concerning the measurement of triangles, in five books.”  The Greek words 
trigonon and metrein mean “three-angle” and “to measure.”  Pitiscus was a clergyman and also a 
mathematics professor at Heidelberg.  Earlier, books on what we consider “trigonometry” often 
had the word for “triangle” in their titles. 
 

Angle Measures 
 

Degree 
 

The Greeks described the 360 divisions at the center of a circle as moira, meaning steps.  
The Arab word was daraja, which the Europeans translated into the Latin de gradus.  The 
symbol for degree(s) is  °. 
 
Minute 
 
 The Latin phrase pars minuta prima means “first small part”:  small in the sense of mini 
or miniature.  Each of these “small parts” is one-sixtieth of a degree.  The word “minute” then 
became the name of this “small part”.  The symbol for minute(s) is  ′. 
 
Second 
 
 The Latin phrase pars minuta secunda means “second small part”:  second in the sense of 
next after the first.  Thus, a minute was divided into sixty “second small parts”, and the word 
“second” became the name of this “part.”   The symbol for second(s) is  ″. 
  
Radian 
 
 James Thomson, brother of the physicist Lord William Kelvin, used the word “radian” in 
his private papers in or before the year 1871.  He first used radians publicly in a final exam that 
he gave at Queen’s College in Belfast, Ireland, in 1873.  Radian is an abbreviation for radius-
angle. 
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The 6 Functions:  Sine and Cosine, 
Tangent and Cotangent, Secant and Cosecant 

 
Sine and Cosine 
 
 The derivation of the name “sine” is a mini-history reflecting the multicultural origins of 
trigonometry.  The chord and sine were most important for early astronomers.  The Greek 
astronomer Ptolemy (c. 150 CE) tabulated lengths of 
chords corresponding to central angles in a circle.  
Aryabhata of India (c. 500 CE) streamlined 
astronomical calculations by creating tables of half 
chords.  A half chord, or jya-ardha, is actually a side of 
a right triangle opposite ∠θ, which is half a central 
angle.  Jya-arhda is our modern concept of r⋅sinθ or 
simply sin θ when radius r = 1 unit.  It became 
shortened to jya.  When the Arabs learned trigonometry 
from the Indians, they took this word to be jiba.  In 
Arabic, however, vowels are generally omitted in 
writing.  Thus, all that was written were the two 
consonants jb.  When Latin translators translated the 
Arabic works, they took this word to be a different Arabic word, namely jaib, which means fold, 
bay, or inlet.  Thus, they translated it by the comparable Latin word sinus, from which comes our 
word “sine.”  Fibonacci of Italy used and promoted the term sinus rectus arcus (1220).   

θ 
r 

 

 
The word “cosine” is simply short for “sine of the complement of an angle”, or, simply r 

“sine complement.” 
 
The abbreviations sin and cos first arose in 1626 in a trigonometry treatise by Girard 

(1595-1632).  Other terms used for sine and cosine were:   
 

sinus residuae (meaning cosine) - by Viete, around 1580 
  co-sinus - Gunter, 1620 
  sin (in a drawing) - Gunter, 1624 
  sin (in a book) - Herigone, 1634 
  Si, Si.2 - Cavalieri, 1643 
  cosinus - John Newton, 1658 
  sin., cos. - Euler, 1748 
 
Tangent and Cotangent 
 
 The concepts of tangent and cotangent originated in shadow reckoning performed by the 
Babylonians and the Greeks to mark the hours of the day.  Cotangent was known as umbra recta, 
that is the “direct shadow” cast horizontally when a gnomon (standard rod of unit length) was 
stood vertically on the ground.  Tangent was umbra versa, or “turned shadow”; it was cast 
vertically when a gnomon was affixed horizontally to a wall.   
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 A gnomon was a straight pole or rod of standard length used in shadow reckoning.  Also, 
L-shaped gnomons were used in sundials.  Gnomon is a Greek word meaning “that enabling to 
be known.” 

 
 

  

ground 

sun 

wall 

sun 

gnomon=1 unit length 

θ 

θ
 

 

umbra versa, 
or  tangent θ 

umbra recta, 
or    
cotangent θ 

gnomon= 
1 unit 
length 

 
 
Viète (c. 1580) used the terms amsinus and prosinus for tangent and cotangent.  The term 

tangent was first used by Fincke in 1583 and became popularized by Pitiscus in 1595.  Other 
terms used were: 

 
  cotangens - by Gunter, 1620 
  Ta, Ta.2 - Cavalieri, 1643 
  Cot. - Jonas Moore, 1674 
  tang., cot. - Euler, 1748 
 
 

    The trigonometric tangent function is related to the    
geometric tangent line CD.  The Latin word tangere 
means “to touch.”  Defining tan ∠APQ = opposite leg 
AQ / adjacent leg PQ, then by similar triangles:   

B 

A 

P 
Q 

r 

C 
 

 
AQ / PQ = CT / PT 

T  
tan  ∠APQ = CT / radius r 
 

If r is taken as a unit length 1, then tan  ∠APQ = CT.  
which is half of the tangent segment intercepted by the 
central angle ∠APB.  This development is like that of 
sine, sin ∠APQ = AQ,  which is half of the chord 
intercepted by the central angle ∠APB. 

D 
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Secant and Cosecant 
 
 Fincke first used the term “secant”, in 1583 in his book Geometria Rotundi.  Rheticus 
was the first to name “cosecant” in his Opus Palatinum, published posthumously in 1596.  In 
shadow reckoning,  secant and cosecant were the distance between the tip of the gnomon and the 
tip of the shadow:  secant for a horizontal gnomon, and cosecant for a vertical gnomon.  Abu’l-
Wafa (c. 980), was the first to formally treat these functions, but did not give them names.   
 
 

 
 

             
             
             
        

sun 

ground 
θ
 

 

distance between tip 
of gnomon and tip of 
shadow = cosecant θ 

gnomon= 
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distance between tip 
of gnomon and tip of 
shadow = secant θ 
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 Navigation in the 15th century sparked interest in tabulating acute angles and the 
hypotenuse.   
 

 
The word Secante was used by Edward Wright 1599 in explaining the mathematics 

behind Mercator’s 1569 map.  As this map preserved the correct direction between two locations, 
it served the needs of navigators and mariners.  Here is a brief chronology of important names 
for secant and cosecant: 

 
  hypotenusa, meaning secant, used by Copernicus in 1542 
  secant - Fincke 1583 
  cosecant - Rheticus 1596 posthumous 

Secante - Edward Wright 1599 
 Se and Se.2 - Cavalieri in 1643 

  sec. and cosec. - Euler in 1748 
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The Inverse Trigonometric Functions 
 

 Today, both the arcsine and sin -1 symbols (for example) are in general usage. 
Formal recognition of the inverse trigonometric functions came in the early eighteenth century, 
along with the following notation: 
 

A S.  meaning the arc of the angle whose sine is x, was used by Daniel  
Bernoulli in 1729. 

A t                  arctangent, by Euler in 1736 indicating, on a unit circle, the arc 
  whose tangent is t 

  A  arcsine, Euler 
  arcus sinui Lambert 1758 
  arc. tang. Sherferr 1758 
  arc(sin. = x) Condorcet 1769 
  arc. sin. x Lagrange 1772 
  arc. sin. Lambert 1776 
  arcsin  J. Houel 
 
 An alternate notation, sin -1 x, cos -1 x, and tan -1 x, was used in 1813 by astronomer John 
F. W. Herschel of England (1792-1871).  The inverse cosine of x, generally written arc(cos. = x), 
began appearing as cos -1 x.  The small raised numerals were carried over from calculus to 
indicate operations on functions, for example in calculus d2x represented the derivative of a 
derivative.  Herschel was motivated by exponents; where he meant f(f(x)), he wrote f 2(x).  He 
further adapted the symbolism of the Product of Powers Rule:  b n b - n = b 0 (real number b ≠ 0) 
and the Zero Exponent: b 0 = 1 (b ≠ 0).  He said that if f is the inverse function for cos(x), then f 
cos(x) = cos(x) f  = x implies that f can be written cos - 1(x).  Herschel considered notation to have 
an important role in developing ideas.   
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A List of Important Developments 
in the History of Trigonometry 

 
Suggested Student Usages for the Timeline: 
 
1. Locate the geographic areas that are mentioned.  (Keep a world map displayed in the 

classroom.)   Look up the cities where the mathematicians lived, and locate the cities on 
the map. 

 
2. Research details of the listed and other math events of the time period .  
 
3. Draw a time scale horizontally.  Then below it, for the appropriate years, list the math 

developments and the places where they occurred. 
 
4. Do a project that explores an important development in the history of trigonometry. 
 
5. Find out the life and times of mathematicians.  Find out the cultural influences upon the 

mathematics of the time, and vice versa. 
 
6. Add noteworthy events of the times, such as the Crusades, Shakespeare’s writing Hamlet, 

or Gutenberg’s printing press.   
 
7. Answer questions such as:   (Each answer about “when” would best include who, where, 

and why.)   
   When did trigonometry get its name?   
   When did the six trigonometric ratios get their names?    
   For how long was trigonometry identified with astronomy?   
   When did trigonometry first apply to right triangle ratios?   
   When were trigonometric functions (circular functions) created? 
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The Timeline: 
 
 
Century 

 
Development  

 Trigonometry begins with Greek astronomy, the belief being that heavenly 
bodies orbit the earth in circles.  People analyze circular arcs and the related 
chords in order to predict positions and to tell time.  Spherical trigonometry 
develops along with plane trigonometry. 

6th  
century 
BCE 

Thales (625-547 BCE) uses similar triangles for indirect measurement. 

3rd 
century 
BCE 

About 300 BCE, Euclid derives a geometry theorem equivalent to the Law of 
Cosines in Book Two, Propositions 12, 13 of the Elements.   
Archimedes (287-212 BCE) develops a geometry formula equivalent to that for 
sin(A + B) in the Theorem of the Broken Chord. 
 

2nd 
century 
BCE 

Hipparchus (180-125 BCE), astronomer and father of trigonometry, creates tables 
of chords.   

2nd 
century 
CE 

Menelaus of Alexandria writes the earliest treatise on spherical trigonometry 
around 100 CE.   
Ptolemy writes Almagest around 150 CE.  For central angles in a circle of radius 
60, his table gives chords equal to 120 times the sine of 1/2 the angle  

 By the 5th century, India becomes the center of mathematical advances. 
5th 
century 

A table of half-chords appears in an astronomical work, Surya Siddhanta, around 
400 CE, probably based on Hipparchus’ table.  

6th 
century 
 

Aryabhata associates sines with angles, today’s sine function concept, around 500 
CE.  His sine table contains cosines, or sines of the complementary angles. 
Islamic contact with India occurs between 700 and 1000 CE. 

7th 
century 

In about 600, Bhaskara I gives an algebraic rule to approximate sine values without 
tables. 

8th 
century 

The Chinese Buddhist monk I-Hsing (683-727), the greatest astronomer of his time, 
makes the first table of tangents in 724. 

 With the ascendancy of the Islamic world, Islamic mathematicians blend 
Greek, Hindu, and their own discoveries into a true trigonometry. 

9th 
century 

Al-Hasib develops tables of shadows, today’s tangent and cotangent, around 860. 

10th 
century 

Al-Battani (c. 850-929) finds a trigonometric formula for the sun’s height using 
shadows.   
Abu’l-Wafa (940-998), the greatest Islamic mathematician of the 10th century, puts 
trigonometry onto a unit circle.  He originates the secant and cosecant concepts. 

11th 
century 

An Islamic method of  prostaphaeresis exists which converts a product to a sum:        
2 cos x cos y = cos(x + y) + cos(x – y).   
Al-Biruni (973-1055) develops sin, cos, tan, cot, sec, csc for shadows and writes 
about astronomy and surveying. 
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 By the 12th century, Europeans learn trigonometry because Latin scholars 
translate Greek, Hindu, and Islamic mathematics. 

13th 
century 

Fibonacci’s Practica Geometriae (1220) gathers trigonometry from Islamic works. 
Nasir al-Din al-Tusi (1201-1274) separates trigonometry from astronomy and 
writes a trigonometry text.  Islamic mathematicians use all 6 trigonometric 
quantities from the 13th century onward.  

15th 
century 

Regiomontanus (1436-1476) is the first westerner truly able to explain Ptolemy’s 
astronomy to Europeans. 
 

16th 
century 

Publication (1533) of On Triangles, by Regiomontanus, systematizes spherical and 
plane trigonometry.   
Rheticus (1514-1574) makes highly precise tables for radius 1015 and uses right 
triangle ratios rather than arcs.   
In 1579 Viete (1540-1603) blends trigonometry, algebra, and functions; e. g. he 
uses trigonometry to solve cubic equations.   
Pitiscus (1561-1613) publishes book (1595) with trigonometry as we know it today 
and coins the word “trigonometry”. 
Age of Copernicus, Galileo, Kepler.  Scientists of the 16th and 17th centuries study 
periodic phenomena. 

17th 
century 

Napier (1550-1617) invents logarithms of sines (to multiply sine values, it is much 
easier to add log sines).   
In 1635, Roberval publishes the first sketch of a sine curve.   
Trigonometry is changing from computations to functions. 

18th 
century 

In 1748, Euler (1707-1783) founds analytic trigonometry and periodic circular 
functions.  He says that eix = cos x + i sin x. 
In 1796, Gauss uses trigonometry to prove that a 17-sided polygon can be 
constructed with compass and straightedge. 

19th 
century 

Fourier (1768-1830) in Analytical Theory of Heat (1822) shows that any function 
whatsoever can be written as a sum of sines and cosines. 

 
 
Published Timelines: 
 
Boyer, A History of Mathematics 
 
Campbell and Higgins editors, Mathematics - People, Problems, Results, volume 1 
 
Karl Smith, The Nature of Mathematics, inside the covers 
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Websites 
 

 In addition we found these websites to be useful and enjoyable, and hope they are still 
around for your enjoyment. 
 
http://www-history.mcs.st-and.ac.uk/history/ 
 The MacTutor History of Mathematics archive, containing mathematicians, history  
topics, and famous curves.  A must-see website.  Accessed June 27, 2001 
 
http://www.ies.co.jp/math/java/trig/index.html 
 Interactive investigation of the trigonometric functions, Laws of Sines and Cosines, 
Ferris wheel, and crane. Accessed June 27, 2001 
 
http://www.skypub.com/tips/skywise/13-jul98.html 
 A cute cartoon explaining how our elliptical orbit with the sun at a focus causes us to 
have 94 days of summer and only 91 days of winter.  Accessed June 27, 2001 
 
http://nssdc.gsfc.nasa.gov/cgi-bin/database/www-nmc?69-059C-04 
http://nssdc.gsfc.nasa.gov/cgi-bin/database/www-nmc?71-008C-09 
http://nssdc.gsfc.nasa.gov/cgi-bin/database/www-nmc?71-063C-08 
http://nssdc.gsfc.nasa.gov/cgi-bin/database/www-nmc?71-063C-08 
 Descriptions of the reflectors left on the Moon by the Apollo 11,14 and 15 missions, and 
some other cool stuff.  Accessed June 27, 2001 
 
http://www2.jpl.nasa.gov/files/universe/un940729.txt 
http://www.ridgenet.net/~do_while/sage/v2i2f.htm 
 Information about how the reflectors were used to measure the distance to the Moon.  
Accessed June 27, 2001 
 
http://spaceboy.nasda.go.jp/note/shikumi/e/Shi08_e.html 
 A nice website on Hipparchus's work finding the distances to the moon and to the sun.  
There's also a good method for finding the distance from the moon to the earth that uses only 
right triangles. Accessed June 27, 2001 
 
http://cannon.sfsu.edu/~lea/courses/nexa/cwwplan.html 
 Shows retrograde motion and why Polaris is only our current North star. Accessed June 
27, 2001 

http://www.mhs.ox.ac.uk/exhibits/index.htm
http://www.ies.co.jp/math/java/trig/index.html
http://www.skypub.com/tips/skywise/13-jul98.html
http://nssdc.gsfc.nasa.gov/cgi-bin/database/www-nmc?69-059C-04
http://nssdc.gsfc.nasa.gov/cgi-bin/database/www-nmc?71-008C-09
http://nssdc.gsfc.nasa.gov/cgi-bin/database/www-nmc?71-063C-08
http://nssdc.gsfc.nasa.gov/cgi-bin/database/www-nmc?71-063C-08
http://nssdc.gsfc.nasa.gov/cgi-bin/database/www-nmc?71-063C-08
http://www.ridgenet.net/~do_while/sage/v2i2f.htm
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